This research evaluates the fatigue properties of TÍ-6AI-4V specimens and components produced by Electron Beam additive manufacturing. It was found that the fatigue performance of specimens produced by additive manufacturing is signiflcantly lower than that of wrought material due to defects such as porosity and suiface roughness. However, evaluation of an actual component subjected to design fatigue loads did not result in premature failure as anticipated by specimen testing. Metallography, residual stress, static strength and elongation, fracture toughness, crack growth, and the effect of post processing operations such as machining and peening on fatigue petformance were also evaluated.
The purpose of this study was to provide molecular and mechanistic evaluation of an ischemic wound model in rats to determine if it is a valid model for human chronic wounds. Compared to acute wounds, human chronic wounds contain markedly elevated levels of proinflammatory cytokines and matrix metalloproteinases, while matrix metalloproteinase inhibitors and growth factor activity are diminished. Accordingly, tissue from ischemic and normal rat wounds were analyzed for cytokine, proteases and growth factor levels. Dorsal full thickness punch wounds were created in rats using a reproducible template. The ischemic wound group (n = 10) had six uniformly placed wounds within a bipedicled dorsal flap. The control group (n = 10) had the same wounds created without elevation of a flap. On postwound days 3, 6 and 13 wounds were excised and analyzed. Protein levels for tumor necrosis factor-alpha were determined with a rat-specific enzyme-linked immunosorbent assay, while mRNA was determined by RNase protection assay. Matrix metalloproteinases and serine protease detection was done using gelatin and casein zymography, respectively. Significant delay in healing was achieved in the ischemic group: 50% healing for control wounds was at 7 days and 11 days for ischemic wounds (p < 0.001). No significant differences between wound groups were found for interleukin-1beta, and mRNA for tumor necrosis factor-alpha and interleukin-1beta. However, at day 13 ischemic wounds contained significantly more tumor necrosis factor-alpha than controls and normal skin (586 +/- 106 pg/biopsy vs. 79 +/- 7 pg/biopsy vs. 52 +/- 2 pg/biopsy; p < 0. 001). Zymography showed substantially greater quantities of matrix metalloproteinase-2, matrix metalloproteinase-9, and serine proteases in ischemic wounds. This model of delayed healing in rats shares many of the key biochemical, molecular and mechanistic characteristics found in human chronic wounds, namely elevated tumor necrosis factor-alpha and protease levels. As such, this model will likely prove to be useful in chronic wound research, particularly in developing novel therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.