The base‐catalyzed cyclization of 1,2‐bis(phosphanyl)ethane with trivinylphosphane on a pentamethylcyclopentadienyl iron template results in the high‐yield synthesis of the first triphosphacyclononane derivative containing one vinyl‐functionalized and two secondary phosphanes. The vinyl triphosphacyclononane is readily hydrogenated and alkylated to give the tritertiary 1,4,7‐triethyltriphosphane macrocycle 1.
The synthesis of N-heterocyclic carbene-diphosphine macrocycles by metal template assisted cyclization reactions has been explored. Attempts to prepare the facial tungsten tricarbonyl precursor complex containing an NH,NH-functionalized carbene and a suitable diphosphine resulted in displacement of the coordinated carbene and the isolation of the corresponding diphosphine tungsten tetracarbonyl [3]. The Re(I) chloro tetracarbonyl complex bearing an NH,NH-functionalized carbene ligand [5] can be prepared and is a suitable precursor for the subsequent formation of the carbene-diphosphine tricarbonyl intermediate [H(2)-6]Cl bearing reactive 2-fluoro substituents at the phosphine-phenyl groups. Two of these fluoro substituents are displaced by a nucleophilic attack upon deprotonation of the coordinated NH,NH-functionalized carbene resulting in new C-N bonds resulting in the partially coupled intermediate, [10], followed by the desired complex with the macrocyclic ligand [8]Cl. Compounds [H-7]Cl and [8]Cl are also formed during the synthesis of [H(2)-6]Cl as a result of spontaneous HF elimination. Complex [8](+) may be converted to the neutral dicarbonyl chloro analog [11] by action of Me(3)NO. Related chemistry with analogous manganese complexes is observed. Thus, from the NH,NH-functionalized carbene manganese bromo tetracarbonyl [12], the diphosphine manganese carbene tricarbonyl cation [H(2)-13] may be readily prepared which provides the macrocyclic carbene-diphosphine tricarbonyl cation [14](+) following base promoted nucleophilic intramolecular displacement of fluoride. Again, [14](+) is converted to the neutral bromo dicarbonyl upon reaction with Me(3)NO. All complexes with the exception of the reaction intermediate [10] have been characterized by spectroscopic and analytical methods in addition to X-ray crystallographic structure determinations for complexes [3], [5], [H(2)-6]Cl, [H(2)-6][9], [8]Cl, [10], [11], [12], and [14]Br.
By use of immunohistochemistry, we characterized the molecular phenotype of human olfactory epithelial (OE) cells and assessed the nature of the dystrophic olfactory neurites described initially in Alzheimer's disease (AD). Keratin 8 was present in all classes of OE cells. Sustentacular cells lacked other cell type specific polypeptides and were distinguished from neurons and basal cells because the latter two classes of OE cells expressed neural cell adhesion molecules (N-CAMs) and microtubule associated proteins (MAPs), i.e., MAP5. Basal cells expressed nerve growth factor receptors (NGFRs), which distinguished them from olfactory neurons. Unlike their perikarya, olfactory axons expressed vimentin and GAP-43, but not peripherin or neurofilament (NF) proteins. Olfactory nerves were distinguished from other axons because the latter were positive for all three NF subunits and peripherin, in addition to vimentin and GAP-43. Dystrophic neurites in the OE were GAP-43 positive, but they also expressed proteins that were not detected in normal olfactory nerves (i.e., synaptophysin, MAP2, tau, peripherin, NF proteins). Further, rare NF positive olfactory neurons gave rise to NF positive dystrophic neurites. These neurites were present in all 11 AD cases, 11 of 14 subjects with other neurodegenerative diseases, and 6 of 8 neurologically normal adult controls, but no dystrophic neurites were seen in 9 fetal and neonatal cases. We conclude that the molecular phenotype of different human OE cells is distinct and that dystrophic olfactory neurites occur very frequently in neurologically normal adults. The relevance of these neurites to aging or specific disease processes remains speculative.
The reactions of propargyl amides, ureas, carbamates, and carbonates with B(C 6 F 5 ) 3 proceed via an intramolecular 5-exo-dig cyclization across the alkyne unit to yield the corresponding vinyl borate species. The generated sp 2 carbocation is stabilized by the flanking heteroatoms, allowing for isolation of oxazoline intermediates. The fate of these intermediates is strongly dependent upon the propargylfunctionalized starting material, with the carbamates and carbonates undergoing a ring-opening mechanism (propargyl rearrangement) to give cyclic allylboron compounds, while prolonged heating of the urea derivatives shows evidence of oxazole formation. In a deviation away from the reactivity of carbamates stated previously, the benzyl carbamate substrate undergoes dealkylation at the benzylic position, liberating 5-methyloxazol-2-(3H)-one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.