A new, biocompatible hyaluronic acid (HA)-silk hydrogel composite was fabricated and tested for use as a securable drug delivery vehicle. The composite consisted of a hydrogel formed by cross-linking thiol-modified HA with poly(ethylene glycol)-diacrylate, within which was embedded a reinforcing mat composed of electrospun silk fibroin protein. Both HA and silk are biocompatible, selectively degradable biomaterials with independently controllable material properties. Mechanical characterization showed the composite tensile strength as fabricated to be 4.43 ± 2.87 kPa, two orders of magnitude above estimated tensions found around potential target organs. In the presence of hyaluronidase (HAse) in vitro, the rate of gel degradation increased with enzyme concentration although the reinforcing silk mesh was not digested. Composite gels demonstrated the ability to store and sustainably deliver therapeutic agents. Time constants for in vitro release of selected representative antibacterial and anti-inflammatory drugs varied from 46.7 min for cortisone to 418 min for hydrocortisone. This biocomposite showed promising mechanical characteristics for direct fastening to tissue and organs, as well as controllable degradation properties suitable for storage and release of therapeutically relevant drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.