Recent observational campaigns have shown that multi-planet systems seem to be abundant in our Galaxy. Moreover, it seems that these systems might have distant companions, either planets, brown-dwarfs or other stellar objects. These companions might be inclined with respect to the inner planets, and could potentially excite the eccentricities of the inner planets through the Eccentric Kozai-Lidov mechanism. These eccentricity excitations could perhaps cause the inner orbits to cross, disrupting the inner system. We study the stability of two-planet systems in the presence of a distant, inclined, giant planet. Specifically, we derive a stability criterion, which depends on the companion's separation and eccentricity. We show that our analytic criterion agrees with the results obtained from numerically integrating an ensemble of systems. Finally, as a potential proof-of-concept, we provide a set of predictions for the parameter space that allows the existence of planetary companions for the
Scanning illumination systems provide for a powerful and flexible means for controlling illumination coherence properties. Here we present a scanning Fourier synthesis illuminator that enables microfield extreme ultraviolet lithography to be performed on an intrinsically coherent synchrotron undulator beamline. The effectiveness of the system is demonstrated through a variety of print experiments, including the use of resolution enhancing coherence functions that enable the printing of 50-nm line-space features by use of a lithographic optic with a numerical aperture of 0.1 and an operational wavelength of 13.4 nm.
Absolute measurements of the photoabsorption coefFicient of Mg, Al, and Si from 25 eV up to the L3 absorption edge are presented. Transmission measurements were performed on free-standing thin films using a laser-produced plasma source. The surface oxide is corrected for by taking the ratio of the absorption for different film thicknesses. The values so obtained are, in general, lower than have been reported in the literature. Structure below the edge is observed for Al and Si. Despite the fact that the absorption below the L3 edge is due to the valence or conduction electrons, the magnitude of the absorption coefBcient for the solid is much higher than is predicted by a simple Drude model and is close to that expected from calculations for the free atom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.