Abstract. Runoff from small glacier systems contains dissolved organic carbon (DOC) rich in protein-like, low molecular weight (LMW) compounds, designating glaciers as an important source of bioavailable carbon for downstream heterotrophic activity. Fluxes of DOC and particulate organic carbon (POC) exported from large Greenland catchments, however, remain unquantified, despite the Greenland Ice Sheet (GrIS) being the largest source of global glacial runoff (ca. 400 km3 yr−1). We report high and episodic fluxes of POC and DOC from a large (>600 km2) GrIS catchment during contrasting melt seasons. POC dominates organic carbon (OC) export (70–89% on average), is sourced from the ice sheet bed, and contains a significant bioreactive component (9% carbohydrates). A major source of the "bioavailable" (free carbohydrate) LMW–DOC fraction is microbial activity on the ice sheet surface, with some further addition of LMW–DOC to meltwaters by biogeochemical processes at the ice sheet bed. The bioavailability of the exported DOC (26–53%) to downstream marine microorganisms is similar to that reported from other glacial watersheds. Annual fluxes of DOC and free carbohydrates during two melt seasons were similar, despite the approximately two-fold difference in runoff fluxes, suggesting production-limited DOC sources. POC fluxes were also insensitive to an increase in seasonal runoff volumes, indicating a supply limitation in suspended sediment in runoff. Scaled to the GrIS, the combined DOC (0.13–0.17 Tg C yr−1 (±13%)) and POC fluxes (mean = 0.36–1.52 Tg C yr−1 (±14%)) are of a similar order of magnitude to a large Arctic river system, and hence may represent an important OC source to the near-coastal North Atlantic, Greenland and Labrador seas.
This work describes a novel application of capillary-flow ion chromatography mass spectrometry for metabolomic analysis, and comparison of the technique to octadecyl silica and hydrophilic interaction chromatography (HILIC)-based mass spectrometry. While liquid chromatography/mass spectrometry (LC/MS) is rapidly becoming the standard technique for metabolomic analysis, metabolomic samples are extremely heterogeneous, leading to a requirement for multiple methods of analysis and separation techniques to perform a 'global' metabolomic analysis. While C18 is suitable for hydrophobic metabolites and has been used extensively in pharmaceutical drug metabolism studies, HILIC is, in general, efficient at separating polar metabolites. Phosphorylated species and organic acids are challenging to analyse and effectively quantitate on both systems. There is therefore a requirement for an MS-compatible analytical technique that can separate negatively charged compounds, such as ion-exchange chromatography. Evaluation of capillary flow ion chromatography with electrolytic suppression was performed on a library of metabolite standards and was shown to effectively separate organic acids and sugar di- and tri-phosphates. Limits of detection for these compounds range from 0.01 to 100 pmol on-column. Application of capillary ion chromatography to a comparative analysis of energy metabolism in procyclic forms of the parasitic protozoan Trypanosoma brucei where cells were grown on glucose or proline as a carbon source was demonstrated to be more effective than HILIC for detection of the organic acids that comprise glucose central metabolism and the tricarboxylic acid (TCA) cycle.
Abstract. Runoff from small glacier systems contains dissolved organic carbon (DOC), rich in protein-like, low molecular weight (LMW) compounds, designating glaciers as an important source of bioavailable carbon for downstream heterotrophic activity. Fluxes of DOC and particulate organic carbon (POC) exported from large Greenland catchments, however, remain unquantified, despite the Greenland Ice Sheet (GrIS) being the largest source of global glacial runoff (ca. 400 km3 yr−1). We report high and episodic fluxes of POC and DOC from a large (1200 km2) GrIS catchment during contrasting melt seasons. POC dominates organic carbon (OC) export (70–89% on average), is sourced from the ice sheet bed and contains a significant bioreactive component (9% carbohydrates). A major source for the "bioavailable" (free carbohydrates) LMW-DOC fraction is microbial activity on the ice sheet surface, with some further addition of LMW-DOC to meltwaters by biogeochemical processes at the ice sheet bed. The bioavailability of the exported DOC (30–58%) to downstream marine microorganisms is similar to that reported from other glacial watersheds. Annual fluxes of DOC and free carbohydrates during two melt seasons were similar, despite the ~ 2 fold difference in runoff fluxes, suggesting production-limited DOC sources. POC fluxes were also insensitive to an increase in seasonal runoff volumes, indicating supply-limitation of suspended sediment in runoff. Scaled to the GrIS, the combined DOC and POC fluxes (0.13–0.17 Tg C yr−1 DOC, 0.36–1.52 Tg C yr−1 mean POC) are of a similar order of magnitude to a large Arctic river system, and hence represent an important OC source to the North Atlantic, Greenland and Labrador Seas.
An improved method is described for the routine analysis of methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and tert-butyl alcohol (TBA) in petroleum fuelcontaminated groundwater samples using solid-phase microextraction (SPME) and deuterated internal standards combined with gas chromatography mass spectrometry (GC-MS). Factors affecting method performance (SPME fiber selection, headspace or liquid extraction, extraction time, calibration conditions, salt addition, method sensitivity, and matrix effects) are evaluated using groundwater samples from a chalk aquifer contaminated with petroleum fuel containing MTBE, TAME, and TBA. The detection sensitivity and analytical efficiency of the method was optimized for these compounds using a PDMS-Carboxen fiber, sample NaCl content of 25% (w/v), and extraction time of 30 min. Internal calibration standards (deuterated MTBE and TBA) are necessary to control extraction errors during analysis. SPME extraction efficiency and detection sensitivity for the oxygenates and TBA decreased as the background matrix concentration of benzene, toluene, ethylbenzene, and xylenes (BTEX) increased up to 300 mg/L total BTEX. However, reliable measurement of MTBE, TAME, and TBA was possible in this BTEX matrix using deuterated internal standards. The precision, accuracy, and reliability of the method were verified by analysis of certified standards. Analytical accuracy, determined from replicate (n ) 10) analysis of spiked laboratory standards and groundwater samples, was 97%, with a precision of 1.6-2.9% for MTBE, 3.1-5.8% for TAME, and 1.6-1.7% for TBA. Method detection limits under the conditions described are 2 µg/L for TBA (by liquid sampling) and 1 µg/L for MTBE and TAME (by headspace sampling). This sensitivity can be increased for MTBE by further refinement of the method.
Abstract. Determining the concentration and composition of dissolved organic carbon (DOC) in glacial ecosystems is important for assessments of in situ microbial activity and contributions to wider biogeochemical cycles. Nonetheless, there is limited knowledge of the abundance and character of DOC in basal ice and the subglacial environment and a lack of quantitative data on low-molecular-weight (LMW) DOC components, which are believed to be highly bioavailable to microorganisms. We investigated the abundance and composition of DOC in basal ice via a molecular-level DOC analysis. Spectrofluorometry and a novel ion chromatographic method, which has been little utilized in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates, and carboxylic acids) in basal ice from four glaciers, each with a different type of overridden material (i.e. the pre-entrainment sedimentary type such as lacustrine material or palaeosols). Basal ice from Joyce Glacier (Antarctica) was unique in that 98 % of the LMW-DOC was derived from the extremely diverse free amino acid (FAA) pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard), and Engabreen (Norway) were low (0–417 nM C), attributed to the relatively refractory nature of the OC in the overridden palaeosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430 nM C) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (> 17 % of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet subglacial sediments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.