Controlling polymer composition starting from mixtures of monomers is an important, but rarely achieved, target. Here a single switchable catalyst for both ring-opening polymerization (ROP) of lactones and ring-opening copolymerization (ROCOP) of epoxides, anhydrides, and CO2 is investigated, using both experimental and theoretical methods. Different combinations of four model monomers-ε-caprolactone, cyclohexene oxide, phthalic anhydride, and carbon dioxide-are investigated using a single dizinc catalyst. The catalyst switches between the distinct polymerization cycles and shows high monomer selectivity, resulting in block sequence control and predictable compositions (esters and carbonates) in the polymer chain. The understanding gained of the orthogonal reactivity of monomers, specifically controlled by the nature of the metal-chain end group, opens the way to engineer polymer block sequences.
International audienceThe ten year old Houk–List model for rationalising the origin of stereoselectivity in the organocatalysed intermolecular aldol addition is revisited, using a variety of computational techniques that have been introduced or improved since the original study. Even for such a relatively small system, the role of dispersion interactions is shown to be crucial, along with the use of basis sets where the superposition errors are low. An NCI (non-covalent interactions) analysis of the transition states is able to identify the noncovalent interactions that influence the selectivity of the reaction, confirming the role of the electrostatic NCH d+ /O dÀ interactions. Simple visual inspection of the NCI surfaces is shown to be a useful tool for the design of alternative reactants. Alternative mechanisms, such as proton-relays involving a water molecule or the Hajos–Parrish alternative, are shown to be higher in energy and for which computed kinetic isotope effects are incompatible with experiment. The Amsterdam manifesto, which espouses the principle that scientific data should be citable, is followed here by using interactive data tables assembled via calls to the data DOI (digital-object-identifiers) for calculations held on a digital data repository and themselves assigned a DOI
This paper reports experimental and computational studies on the mechanism of a rhodium-catalyzed hydroformylation that is selective for branched aldehyde products from unbiased alkene substrates. This highly unusual selectivity relies on a phospholane-phosphite ligand prosaically called BOBPHOS. Kinetic studies using in situ high pressure IR (HPIR) and the reaction progress kinetic analysis methodology suggested two steps in the catalytic cycle were involved as turnover determining. Negative order in CO and positive orders in alkene and H were found and the effect of hydrogen and carbon monoxide partial pressures on selectivity were measured. Labeling studies found rhodium hydride addition to the alkene to be largely irreversible. Detailed spectroscopic HPIR and NMR characterization of activated rhodium-hydrido dicarbonyl species were carried out. In the absence of H, reaction of the rhodium-hydrido dicarbonyl with allylbenzene allowed further detailed spectroscopic characterization of four- and five-coordinate rhodium-acyl species. Under single-turnover conditions, the ratios of branched to linear acyl species were preserved in the final ratios of aldehyde products. Theoretical investigations uncovered unexpected stabilizing CH-π interactions between the ligand and substrate which influenced the high branched selectivity by causing potentially low energy pathways to become unproductive. Energy span and degree of TOF control analysis strongly support experimental observations and mechanistic rationale. A three-dimensional quadrant model was built to represent the structural origins of regio- and enantioselectivity.
An unusual solvent-induced inversion of the sense of enantioselectivity observed in the α-selenylation of aldehydes catalyzed by a diphenylprolinol silyl ether catalyst is correlated to the presence of intermediates formed subsequent to the highly selective C-Se bond-forming step in the catalytic cycle. This work provides support for a mechanistic concept for enamine catalysis and includes a general role for "downstream intermediates" in selectivity outcomes in organocatalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.