Laser-induced damage threshold of transparent conductors, such as Indium Tin Oxide (ITO), is limited by their high optical absorption due to free carriers. However, the effective absorption of a transparent conductor thin film can be reduced by an order of magnitude, without changing the electrical characteristics of the film, when placed in a low electric field section of a multilayer coating. A Fabry-Perot thin film interference filter has both high transmittance and low electric field positions, so it is an ideal thin film structure for this application. Although Fabry-Perot interference filters are not known as particularly high laser-induced damage resistant coatings due to their resonant characteristics, a laser-induced damage threshold (LIDT) improvement of up to 8× was observed with this technique compared to single layer ITO coatings fabricated using either radio frequency magnetron sputtering or electron-beam deposition. Additionally, an approximately 4× LIDT improvement for a Fabry-Perot interference filter has been observed by the addition of ITO into the multilayer structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.