Mass spectrometric identification of cross-linked peptides can provide valuable information about the structure of protein complexes. We describe a straightforward database search scheme that identifies and assigns statistical confidence estimates to spectra from cross-linked peptides. The method is well suited to targeted analysis of a single protein complex, without requiring an isotope labeling strategy. Our approach uses a SEQUEST-style search procedure in which the database is comprised of a mixture of single peptides with and without linkers attached and cross-linked products. In contrast to several previous approaches, we generate theoretical spectra that account for all of the expected peaks from a cross-linked product, and we employ an empirical curve-fitting procedure to estimate statistical confidence measures. We show that our fully automated procedure successfully reidentifies spectra from a previous study, and we provide evidence that our statistical confidence estimates are accurate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.