Voltage-gated potassium (K(v)) channels in vascular smooth muscle cells (VSMC) are critical regulators of membrane potential and vascular tone. These channels exert a hyperpolarizing influence to counteract the depolarizing effects of intraluminal pressure and vasoconstrictors. However, the contribution of K(v) channel activity to the functional regulation of cerebral (parenchymal) arterioles within the brain is not known. Thus K(v) channel properties in parenchymal arteriolar SMCs were characterized. Isolated, pressurized parenchymal arterioles and arterioles in cortical brain slices exhibited robust constriction in the presence of the K(v) channel inhibitor 4-aminopyridine (4-AP). 4-AP also decreased the amplitude of K(v) currents recorded from SMCs. The steady-state activation and inactivation properties of K(v) currents suggested that these channels are composed of K(v)1.2 and 1.5 subunits, which was confirmed by RT-PCR. K(v) channels can be regulated by extracellular glucose, which may be involved in the functional hyperemic response in the brain. Thus the effects of glucose on K(v) channel activity and arteriolar function were investigated. Elevation of glucose from 4 to 14 mM significantly decreased the peak K(v) current amplitude and constricted arterioles. Arteriolar constriction was prevented by inhibition of protein kinase C (PKC), consistent with previous studies showing enhanced PKC activity in the presence of elevated glucose. In cortical brain slices, the dilation generated by neuronal activity induced by electrical field stimulation was decreased by 54% in 14 mM glucose when compared with the dilation in 4 mM glucose. In anesthetized mice the whisker stimulation-induced increase in local cerebral blood flow was also significantly decreased in 14 mM glucose, and this effect was similarly prevented by PKC inhibition. These findings point to a critical role for K(v) channels in the regulation of intracerebral arteriolar function and suggest that changes in perivascular glucose levels could directly alter vascular diameter resulting in a modulation of local cerebral blood flow.
-activated K ϩ (SK) channels play an important role in regulating the frequency and in shaping urinary bladder smooth muscle (UBSM) action potentials, thereby modulating contractility. Here we investigated a role for the SK2 member of the SK family (SK1-3) utilizing: 1) mice expressing -galactosidase (-gal) under the direction of the SK2 promoter (SK2 -gal mice) to localize SK2 expression and 2) mice lacking SK2 gene expression (SK2 Ϫ/Ϫ mice) to assess SK2 function. In SK2 -gal mice, UBSM staining was observed, but staining was undetected in the urothelium. Consistent with this, urothelial SK2 mRNA was determined to be 4% of that in UBSM. Spontaneous phasic contractions in wild-type (SK2 ϩ/ϩ ) UBSM strips were potentiated (259% of control) by the selective SK channel blocker apamin (EC 50 ϭ 0.16 nM), whereas phasic contractions of SK2 Ϫ/Ϫ strips were unaffected. Nerve-mediated contractions of SK2 ϩ/ϩ UBSM strips were also increased by apamin, an effect absent in SK2 Ϫ/Ϫ strips. Apamin increased the sensitivity of SK2 ϩ/ϩ UBSM strips to electrical field stimulation, since pretreatment with apamin decreased the frequency required to reach a 50% maximal contraction (vehicle, 21 Ϯ 4 Hz, n ϭ 6; apamin, 12 Ϯ 2 Hz, n ϭ 7; P Ͻ 0.05). In contrast, the sensitivity of SK2 Ϫ/Ϫ UBSM strips was unaffected by apamin. Here we provide novel insight into the molecular basis of SK channels in the urinary bladder, demonstrating that the SK2 gene is expressed in the bladder and that it is essential for the ability of SK channels to regulate UBSM contractility.bladder; contractility; small-conductance calcium-activated potassium channel; apamin THE COORDINATION OF NEURONAL and smooth muscle electrical activity is critical to the maintenance of proper urinary bladder function. Micturition occurs through the initiation of action potentials within the parasympathetic nerves leading to the bladder. These neuronal action potentials on reaching efferent terminals evoke the release of the excitatory neurotransmitters, acetylcholine and ATP. Acetylcholine and ATP bind to muscarinic (M 2 , M 3 ) and purinergic (P 2X1 ) receptors, respectively, located in the urinary bladder smooth muscle (UBSM) membrane. These transmitters contract the bladder via a coordinated potentiation of UBSM action potentials, which occur "spontaneously" during bladder filling functioning to maintain an appropriate basal bladder tone (10).Overactive bladder, a major underlying cause of urinary incontinence, is frequently caused by alterations in neuronal and/or UBSM electrical activity. Currently, the main therapy used to treat overactive bladder is muscarinic receptor antagonists that function to reduce the coupling of excitatory acetylcholine to UBSM muscarinic receptors. These agents are somewhat effective but have significant side effects, such as dry mouth, and in some cases can lead to incomplete urine voiding during micturition. Therefore, the identification of novel targets to be used for the development of better therapies for overactive bladder and urinar...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.