The white shark (Carcharodon carcharias) is a wide-ranging apex predator in the northeastern Pacific (NEP). Electronic tagging has demonstrated that white sharks exhibit a regular migratory pattern, occurring at coastal sites during the late summer, autumn and early winter and moving offshore to oceanic habitats during the remainder of the year, although the purpose of these migrations remains unclear. The purpose of this study was to use stable isotope analysis (SIA) to provide insight into the trophic ecology and migratory behaviors of white sharks in the NEP. Between 2006 and 2009, 53 white sharks were biopsied in central California to obtain dermal and muscle tissues, which were analyzed for stable isotope values of carbon (δ13C) and nitrogen (δ15N). We developed a mixing model that directly incorporates movement data and tissue incorporation (turnover) rates to better estimate the relative importance of different focal areas to white shark diet and elucidate their migratory behavior. Mixing model results for muscle showed a relatively equal dietary contribution from coastal and offshore regions, indicating that white sharks forage in both areas. However, model results indicated that sharks foraged at a higher relative rate in coastal habitats. There was a negative relationship between shark length and muscle δ13C and δ15N values, which may indicate ontogenetic changes in habitat use related to onset of maturity. The isotopic composition of dermal tissue was consistent with a more rapid incorporation rate than muscle and may represent more recent foraging. Low offshore consumption rates suggest that it is unlikely that foraging is the primary purpose of the offshore migrations. These results demonstrate how SIA can provide insight into the trophic ecology and migratory behavior of marine predators, especially when coupled with electronic tagging data.
The decline of sharks in the global oceans underscores the need for careful assessment and monitoring of remaining populations. The northeastern Pacific is the home range for a genetically distinct clade of white sharks (Carcharodon carcharias). Little is known about the conservation status of this demographically isolated population, concentrated seasonally at two discrete aggregation sites: Central California (CCA) and Guadalupe Island, Mexico. We used photo-identification of dorsal fins in a sequential Bayesian mark-recapture algorithm to estimate white shark abundance off CCA. We collected 321 photographs identifying 130 unique individuals, and estimated the abundance off CCA to be 219 mature and sub-adult individuals ((130, 275) 95% credible intervals), substantially smaller than populations of other large marine predators. Our methods can be readily expanded to estimate shark population abundance at other locations, and over time, to monitor the status, population trends and protection needs of these globally distributed predators.
Predatory behavior and top-down effects in marine ecosystems are well-described, however, intraguild interactions among co-occurring marine top predators remain less understood, but can have far reaching ecological implications. Killer whales and white sharks are prominent upper trophic level predators with highly-overlapping niches, yet their ecological interactions and subsequent effects have remained obscure. Using long-term electronic tagging and survey data we reveal rare and cryptic interactions between these predators at a shared foraging site, Southeast Farallon Island (SEFI). In multiple instances, brief visits from killer whales displaced white sharks from SEFI, disrupting shark feeding behavior for extended periods at this aggregation site. As a result, annual predations of pinnipeds by white sharks at SEFI were negatively correlated with close encounters with killer whales. Tagged white sharks relocated to other aggregation sites, creating detectable increases in white shark density at Ano Nuevo Island. This work highlights the importance of risk effects and intraguild relationships among top ocean predators and the value of long-term data sets revealing these consequential, albeit infrequent, ecological interactions.
Quantifying life history parameters of marine top predators is challenging, as observations are difficult and uncertainty in sex assignment can confound the determination of sex specific parameters. However, these parameters are critical for accurate population assessments and understanding of population dynamics. Using mark recapture observations at white shark foraging aggregation sites, we tested for differences in survival between sexes and estimated apparent survival for sub-adult and adult white sharks in neritic waters off central California. We used 6 years of mark-recapture data and a model that accounted for imperfect detection and imperfect sex assignment. Empirical information based on direct observations suggests that there are no sex-specific or temporal differences in survival during the study period and that survival was estimated to be 0.90; SE = 0.04. Additionally, after animals whose sex was unknown throughout the study period were probabilistically assigned to sex, the ratio in this sample is estimated to be 2.1 males for every female observed. This estimated ratio is lower than the observed ratio of 3:1. We demonstrate that the estimated capture probability for males was roughly twice as high as that for females (0.41, SE = 0.06 and 0.19, SE = 0.07 respectively). Together these results suggest (1) that the sex ratio is uneven but not as skewed as uncorrected observation data would suggest and (2) that unequal mortality in older age classes are not the cause of the observed sex bias but more likely results from disparate mortality earlier in life or differences in behavior. Future research is needed to explore the potential causes of the observed sex bias.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.