Delayed hippocampal injury and memory impairments follow neonatal hypoxia-ischemia (HI) despite the use of therapeutic hypothermia (TH). Death of hippocampal pyramidal cells occurs acutely after HI, but characterization of delayed cell death and injury of interneurons (INs) is unknown. We hypothesize that injury of INs after HI is: (i) asynchronous to that of pyramidal cells, (ii) independent of injury severity, and (iii) unresponsive to TH. HI was induced in C57BL6 mice at p10 with unilateral right carotid ligation and 45 min of hypoxia (FiO = 0.08). Mice were randomized to normothermia (36 °C, NT) or TH (31 °C) for 4 hr after HI and anesthesia-exposed shams were use as controls. Brains were studied at 24 hr (p11) or 8 days (p18) after HI. Vglut1, GAD65/67, PSD95, parvalbumin (PV) and calbindin-1 (Calb1) were measured. Cell death was assessed using cresyl violet staining and TUNEL assay. Hippocampal atrophy and astroglyosis at p18 were used to assess injury severity and to correlate with number of PV + INs. VGlut1 level decreased by 30% at 24 hr after HI, while GAD65/67 level decreased by ∼50% in forebrain 8 days after HI, a decrease localized in CA1 and CA3. PSD95 levels decreased in forebrain by 65% at 24 hr after HI and remained low 8 days after HI. PV + INs increased in numbers (per mm ) and branching between p11 and p18 in sham mice but not in NT and TH mice, resulting in 21-52% fewer PV + INs in injured mice at p18. Calb1 protein and mRNA were also reduced in HI injured mice at p18. At p18, somatodendritic attrition of INs was evident in all injured mice without evidence of cell death. Neither hippocampal atrophy nor astroglyosis correlated with the number of PV + INs at p18. Thus, HI exposure has long lasting effects in the hippocampus impairing the development of the GABAergic system with only partial protection by TH independent of the degree of hippocampal injury. © 2018 Wiley Periodicals, Inc.
Neonatal hypoxia-ischemia (nHI) disrupts hippocampal GABAergic development leading to memory deficits in mice. Polysialic-acid neural-cell adhesion molecule (PSA-NCAM) developmentally declines to trigger GABAergic maturation. We hypothesized that nHI changes PSA-NCAM abundance and cellular distribution, impairing GABAergic development, and marking nascent neurodegeneration. Cell degeneration, atrophy, and PSA-NCAM immunoreactivity (IR) were measured in CA1 of nHI-injured C57BL6 mice related to: (i) cellular subtype markers; (ii) GAD65/67 and synatophysin (SYP), pre-synaptic markers; (iii) phospho-Ser396Tau, cytoskeletal marker; and (iv) GAP43, axonalregeneration marker. PSA-NCAM IR was minimal in CA1 of shams at P11. After nHI, PSA-NCAM IR was increased in injured pyramidal cells (PCs), minimal in parvalbumin (PV)+INs, and absent in glia. PSA-NCAM IR correlated with injury severity and became prominent in perikaryal cytoplasm at P18. GAD65/67 and SYP IRs only weakly related to PSA-NCAM after nHI. Injured phospho-Ser396Tau+ PCs and PV+INs variably co-expressed PSA-NCAM at P40. While PCs with cytoplasmic marginalized PSA-NCAM had increased perisomatic GAP43, those with perikaryal cytoplasmic PSA-NCAM had minimal GAP43. PSA-NCAM increased in serum of nHI-injured mice. Increased PSA-NCAM is likely a generic acute response to nHI brain injury. PSA-NCAM aberrant cellular localization may aggravate neuronal degeneration. The significance of PSA-NCAM as a biomarker of recovery from nHI and nascent neurodegeneration needs further study.
Neonatal hypoxic-ischemic (HI) injury leads to deficits in hippocampal parvalbumin (PV)+ interneurons (INs) and working memory. Therapeutic hypothermia (TH) does not prevent these deficits. ErbB4 supports maturation and maintenance of PV+ IN. Thus, we hypothesized that neonatal HI leads to persistent deficits in PV+ INs, working memory and synaptic plasticity associated with ErbB4 dysregulation despite TH. P10 HI-injured mice were randomized to normothermia (NT, 36 °C) or TH (31 °C) for 4 h and compared to sham. Hippocampi were studied for α-fodrin, glial fibrillary acidic protein (GFAP), and neuroregulin (Nrg) 1 levels; erb-b2 receptor tyrosine kinase 4 (ErbB4)/ Ak strain transforming (Akt) activation; and PV, synaptotagmin (Syt) 2, vesicular-glutamate transporter (VGlut) 2, Nrg1, and ErbB4 expression in coronal sections. Extracellular field potentials and behavioral testing were performed. At P40, deficits in PV+ INs correlated with impaired memory and coincided with blunted long-term depression (LTD), heightened long-term potentiation (LTP) and increased Vglut2/Syt2 ratio, supporting excitatory-inhibitory (E/I) imbalance. Hippocampal Nrg1 levels were increased in the hippocampus 24 h after neonatal HI, delaying the decline documented in shams. Paradoxically ErbB4 activation decreased 24 h and again 30 days after HI. Neonatal HI leads to persistent deficits in hippocampal PV+ INs, memory, and synaptic plasticity. While acute decreased ErbB4 activation supports impaired maturation and survival after HI, late deficit reemergence may impair PV+ INs maintenance after HI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.