This work attempts at providing a revised framework for ornithischian phylogeny, based on an exhaustive data compilation of already published analyses, a critical re-evaluation of osteological characters and an indepth checking of characters scoring to fix mistakes that have accumulated in previous analyses; we have also included recently described basal ornithischians, marginocephalians and ornithopods. 'Heterodontosaurids' are recovered as a paraphyletic group of basal Marginocephalia that progressively lead to the dome-headed 'true' pachycephalosaurs. 'Heterodontosaurids' consequently fall within Pachycephalosauria sensu Sereno, 1998. The reconfiguration of basal cerapodan relationships pulls the origins of ornithopods to the earliest stages of the Jurassic. Based on the present analysis, we also discuss ornithopod relationships, with a particular focus on basal Iguanodontia. Tenontosaurus is found as the basalmost iguanodontian. The monophyly of Rhabdodontomorpha in a position more derived than Tenontosaurus is supported by the present analysis.
Disarticulated and incomplete remains from a new diminutive ornithopod are described. They come from the Cameros Basin in the north of Spain and were collected from the red clays of the Castrillo de la Reina Formation, ranging from Upper Barremian to Lower Aptian. The new ornithopod described here is slender and one of the smallest ever reported. An up-to-date phylogenetic analysis recovers this taxon as a basal iguanodontian. Its unique combination of characters makes it more derived than slender ornithopods like Hyphilophodon and Gasparinisaura, and bring very interesting insights into the basal iguanodontian phylogeny. Though possessing a minimum of three premaxillary teeth, this taxon also bears an extensor ilio-tibialis groove on the distal part of its femur. Moreover, its dentary and maxillary teeth are unique, remarkably similar to those regarded as having a “rhabdomorphan” affinity. This unknown taxon is suggested to be a stem taxon within Rhabdodontidae, a successful clade of basal iguanodonts from the Late Cretaceous of Europe. The Gondwanan ornithopods share the strongest affinities with this family, and we confirm Muttaburrasaurus as a sister taxon of the Rhabdodontidae within a newly defined clade, the Rhabdodontomorpha.
A new basal ornithopod dinosaur, based on two nearly complete articulated skeletons, is reported from the Lujiatun Beds (Yixian Fm, Lower Cretaceous) of western Liaoning Province (China). Some of the diagnostic features of Changmiania liaoningensis nov. gen., nov. sp. are tentatively interpreted as adaptations to a fossorial behavior, including: fused premaxillae; nasal laterally expanded, overhanging the maxilla; shortened neck formed by only six cervical vertebrae; neural spines of the sacral vertebrae completely fused together, forming a craniocaudally-elongated continuous bar; fused scapulocoracoid with prominent scapular spine; and paired ilia symmetrically inclined dorsomedially, partially covering the sacrum in dorsal view. A phylogenetic analysis places Changmiania liaoningensis as the most basal ornithopod dinosaur described so far. It is tentatively hypothesized that both Changmiania liaoningensis specimens were suddenly entrapped in a collapsed underground burrow while they were resting, which would explain their perfect lifelike postures and the complete absence of weathering and scavenging traces. However, further behavioural inference remains problematic, because those specimens lack extensive sedimentological and taphonomic data, as it is also the case for most specimens collected in the Lujiatun Beds so far.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.