Foliar fertilization with selenium (Se) may well be beneficial in increasing the nutritional and qualitative values of food in Se-deficient regions such as the Mediterranean Basin, and may contribute to an increase in drought resistance in plants. The present study has considered detachment force, flesh firmness, pigmentation, fresh and dry weight, and oil content of olive drupes from Se fertilized olive orchards (Olea europaea L.) under drought stress and well-watered conditions. This study has also evaluated the total Se, Se amino acid, phenol, carotenoid and chlorophyll contents of EVOO, plus its oxidative stability against oxidation. While there was no change in the ripening indexes and the production of olives generally, Se application did increase the total Se, Se methionine, phenol, and carotenoid and chlorophyll contents. The higher concentration of these (bio) chemical compounds in EVOO obtained from Se fertilized plants might well suggest enhanced antioxidant activity. Consequently, EVOO obtained from Se fertilized trees possesses a higher nutritional value and, as indicated by the greater oxidative stability against oxidation, longer shelf life. In addition, under water deficient conditions, a higher fresh olive weight corresponds to a higher level of phenol, carotenoid and chlorophyll, and the chlorophyll-to-carotenoid ratio in Se fertilized trees would appear to confirm the positive role of selenium in alleviating damage caused by drought stress conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.