Negative carbon isotope anomalies in carbonate rocks bracketing Neoproterozoic glacial deposits in Namibia, combined with estimates of thermal subsidence history, suggest that biological productivity in the surface ocean collapsed for millions of years. This collapse can be explained by a global glaciation (that is, a snowball Earth), which ended abruptly when subaerial volcanic outgassing raised atmospheric carbon dioxide to about 350 times the modern level. The rapid termination would have resulted in a warming of the snowball Earth to extreme greenhouse conditions. The transfer of atmospheric carbon dioxide to the ocean would result in the rapid precipitation of calcium carbonate in warm surface waters, producing the cap carbonate rocks observed globally.
The gradual discovery that late Neoproterozoic ice sheets extended to sea level near the equator poses a palaeoenvironmental conundrum. Was the Earth's orbital obliquity > 60° (making the tropics colder than the poles) for 4.0 billion years following the lunar‐forming impact, or did climate cool globally for some reason to the point at which runaway ice‐albedo feedback created a `snowball' Earth? The high‐obliquity hypothesis does not account for major features of the Neoproterozoic glacial record such as the abrupt onsets and terminations of discrete glacial events, their close association with large (> 10‰) negative δ13C shifts in seawater proxies, the deposition of strange carbonate layers (`cap carbonates') globally during post‐glacial sea‐level rise, and the return of large sedimentary iron formations, after a 1.1 billion year hiatus, exclusively during glacial events. A snowball event, on the other hand, should begin and end abruptly, particularly at lower latitudes. It should last for millions of years, because outgassing must amass an intense greenhouse in order to overcome the ice albedo. A largely ice‐covered ocean should become anoxic and reduced iron should be widely transported in solution and precipitated as iron formation wherever oxygenic photosynthesis occurred, or upon deglaciation. The intense greenhouse ensures a transient post‐glacial regime of enhanced carbonate and silicate weathering, which should drive a flux of alkalinity that could quantitatively account for the world‐wide occurrence of cap carbonates. The resulting high rates of carbonate sedimentation, coupled with the kinetic isotope effect of transferring the CO2 burden to the ocean, should drive down the δ13C of seawater, as is observed. If cap carbonates are the `smoke' of a snowball Earth, what was the `gun'? In proposing the original Neoproterozoic snowball Earth hypothesis, Joe Kirschvink postulated that an unusual preponderance of land masses in the middle and low latitudes, consistent with palaeomagnetic evidence, set the stage for snowball events by raising the planetary albedo. Others had pointed out that silicate weathering would most likely be enhanced if many continents were in the tropics, resulting in lower atmospheric CO2 and a colder climate. Negative δ13C shifts of 10–20‰ precede glaciation in many regions, giving rise to speculation that the climate was destabilized by a growing dependency on greenhouse methane, stemming ultimately from the same unusual continental distribution. Given the existing palaeomagnetic, geochemical and geological evidence for late Neoproterozoic climatic shocks without parallel in the Phanerozoic, it seems inevitable that the history of life was impacted, perhaps profoundly so.
Comparative geology suggests that the continents adjacent to northern, western, southern, and eastern Laurentia in the Late Proterozoic were Siberia, Australia-Antarctica, southern Africa, and Amazonia-Baltica, respectively. Late Proterozoic fragmentation of the supercontinent centered on Laurentia would then have been followed by rapid fan-like collapse of the (present) southern continents and eventual consolidation of East and West Gondwanaland. In this scenario, a pole of rotation near the Weddell Sea would explain the observed dominance of wrench tectonics in (present) east-west trending Pan-African mobile belts and subduction-accretion tectonics in north-south trending belts. In the process of fragmentation, rifts originating in the interior of the Late Proterozoic supercontinent became the external margins of Paleozoic Gondwanaland; exterior margins of the Late Proterozoic supercontinent became landlocked within the interior of Gondwanaland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.