Avian influenza viruses (AIVs) circulate globally, spilling over into domestic poultry and causing zoonotic infections in humans. Fortunately, AIVs are not yet capable of causing sustained human-to-human infection; however, AIVs are still a high risk as future pandemic strains, especially if they acquire further mutations that facilitate human infection and/or increase pathogenesis. Molecular characterization of sequencing data for known genetic markers associated with AIV adaptation, transmission, and antiviral resistance allows for fast, efficient assessment of AIV risk. Here we summarize and update the current knowledge on experimentally verified molecular markers involved in AIV pathogenicity, receptor binding, replicative capacity, and transmission in both poultry and mammals with a broad focus to include data available on other AIV subtypes outside of A/H5N1 and A/H7N9.
BackgroundDengue laboratory diagnosis is essentially based on detection of the virus, its components or antibodies directed against the virus in blood samples. Blood, however, may be difficult to draw in some patients, especially in children, and sampling during outbreak investigations or epidemiological studies may face logistical challenges or limited compliance to invasive procedures from subjects. The aim of this study was to assess the possibility of using saliva and urine samples instead of blood for dengue diagnosis.Methodology/Principal FindingsSerial plasma, urine and saliva samples were collected at several time-points between the day of admission to hospital until three months after the onset of fever in children with confirmed dengue disease. Quantitative RT-PCR, NS1 antigen capture and ELISA serology for anti-DENV antibody (IgG, IgM and IgA) detection were performed in parallel on the three body fluids. RT-PCR and NS1 tests demonstrated an overall sensitivity of 85.4%/63.4%, 41.6%/14.5% and 39%/28.3%, in plasma, urine and saliva specimens, respectively. When urine and saliva samples were collected at the same time-points and tested concurrently, the diagnostic sensitivity of RNA and NS1 detection assays was 69.1% and 34.4%, respectively. IgG/IgA detection assays had an overall sensitivity of 54.4%/37.4%, 38.5%/26.8% and 52.9%/28.6% in plasma, urine and saliva specimens, respectively. IgM were detected in 38.1% and 36% of the plasma and saliva samples but never in urine.ConclusionsAlthough the performances of the different diagnostic methods were not as good in saliva and urine as in plasma specimens, the results obtained by qRT-PCR and by anti-DENV antibody ELISA could well justify the use of these two body fluids to detect dengue infection in situations when the collection of blood specimens is not possible.
MicroRNA (miRNA) and other types of small regulatory RNAs play a crucial role in the regulation of gene expression in eukaryotes. Several distinct classes of small regulatory RNAs have been discovered in recent years. To extend the repertoire of small RNAs characterized in mammals and to examine relationship between host miRNA expression and viral infection we used Illumina's ultrahigh throughput sequencing approach. We sequenced three small RNA libraries prepared from cell line derived from the adult bovine kidney under normal conditions and upon infection of the cell line with Bovine herpesvirus 1. We used a bioinformatics approach to distinguish authentic mature miRNA sequences from other classes of small RNAs and short RNA fragments represented in the sequencing data. Using this approach we detected 219 out of 356 known bovine miRNAs and 115 respective miRNA* sequences. In addition we identified five new bovine orthologs of known mammalian miRNAs and discovered 268 new cow miRNAs many of which are not identifiable in other mammalian genomes and thus might be specific to the ruminant lineage. In addition we found seven new bovine mirtron candidates. We also discovered 10 small nucleolar RNA (snoRNA) loci that give rise to small RNA with possible miRNA-like function. Results presented in this study extend our knowledge of the biology and evolution of small regulatory RNAs in mammals and illuminate mechanisms of small RNA biogenesis and function. New miRNA sequences and the original sequencing data have been submitted to miRNA repository (miRBase) and NCBI GEO archive respectively. We envisage that these resources will facilitate functional annotation of the bovine genome and promote further functional and comparative genomics studies of small regulatory RNA in mammals.
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus mainly spread by Culex mosquitoes that currently has a geographic distribution across most of Southeast Asia and the Western Pacific. Infection with JEV can cause Japanese encephalitis (JE), a severe disease with a high mortality rate, which also results in ongoing sequalae in many survivors. The natural reservoir of JEV is ardeid wading birds, such as egrets and herons, but pigs commonly play an important role as an amplifying host during outbreaks in human populations. Other domestic animals and wildlife have been detected as hosts for JEV, but their role in the ecology and epidemiology of JEV is uncertain. Safe and effective JEV vaccines are available, but unfortunately, their use remains low in most endemic countries where they are most needed. Increased surveillance and diagnosis of JE is required as climate change and social disruption are likely to facilitate further geographical expansion of Culex vectors and JE risk areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.