BackgroundDengue diagnosis is complex and until recently only specialized laboratories were able to definitively confirm dengue infection. Rapid tests are now available commercially making biological diagnosis possible in the field. The aim of this study was to evaluate a combined dengue rapid test for the detection of NS1 and IgM/IgG antibodies. The evaluation was made prospectively in the field conditions and included the study of the impact of its use as a point-of-care test for case management as well as retrospectively against a panel of well-characterized samples in a reference laboratory.Methodology/Principal FindingsDuring the prospective study, 157 patients hospitalized for a suspicion of dengue were enrolled. In the hospital laboratories, the overall sensitivity, specificity, PPV and NPV of the NS1/IgM/IgG combination tests were 85.7%, 83.9%, 95.6% and 59.1% respectively, whereas they were 94,4%, 90.0%, 97.5% and 77.1% respectively in the national reference laboratory at Institut Pasteur in Cambodia. These results demonstrate that optimal performances require adequate training and quality assurance. The retrospective study showed that the sensitivity of the combined kit did not vary significantly between the serotypes and was not affected by the immune status or by the interval of time between onset of fever and sample collection. The analysis of the medical records indicates that the physicians did not take into consideration the results obtained with the rapid test including for care management and use of antibiotic therapy.ConclusionsIn the context of our prospective field study, we demonstrated that if the SD Bioline Dengue Duo kit is correctly used, a positive result highly suggests a dengue case but a negative result doesn't rule out a dengue infection. Nevertheless, Cambodian pediatricians in their daily practice relied on their clinical diagnosis and thus the false negative results obtained did not directly impact on the clinical management.
BackgroundDengue laboratory diagnosis is essentially based on detection of the virus, its components or antibodies directed against the virus in blood samples. Blood, however, may be difficult to draw in some patients, especially in children, and sampling during outbreak investigations or epidemiological studies may face logistical challenges or limited compliance to invasive procedures from subjects. The aim of this study was to assess the possibility of using saliva and urine samples instead of blood for dengue diagnosis.Methodology/Principal FindingsSerial plasma, urine and saliva samples were collected at several time-points between the day of admission to hospital until three months after the onset of fever in children with confirmed dengue disease. Quantitative RT-PCR, NS1 antigen capture and ELISA serology for anti-DENV antibody (IgG, IgM and IgA) detection were performed in parallel on the three body fluids. RT-PCR and NS1 tests demonstrated an overall sensitivity of 85.4%/63.4%, 41.6%/14.5% and 39%/28.3%, in plasma, urine and saliva specimens, respectively. When urine and saliva samples were collected at the same time-points and tested concurrently, the diagnostic sensitivity of RNA and NS1 detection assays was 69.1% and 34.4%, respectively. IgG/IgA detection assays had an overall sensitivity of 54.4%/37.4%, 38.5%/26.8% and 52.9%/28.6% in plasma, urine and saliva specimens, respectively. IgM were detected in 38.1% and 36% of the plasma and saliva samples but never in urine.ConclusionsAlthough the performances of the different diagnostic methods were not as good in saliva and urine as in plasma specimens, the results obtained by qRT-PCR and by anti-DENV antibody ELISA could well justify the use of these two body fluids to detect dengue infection in situations when the collection of blood specimens is not possible.
Chikungunya virus (CHIKV), probably Asian genotype, was first detected in Cambodia in 1961. Despite no evidence of acute or recent CHIKV infections since 2000, real-time reverse transcription PCR of serum collected in 2011 detected CHIKV, East Central South African genotype. Spatiotemporal patterns and phylogenetic clustering indicate that the virus probably originated in Thailand.
BackgroundRapid diagnostic tests (RDTs) have been commercialized in order to help physicians in dengue diagnosis. Until recently, only blood samples were used for those tests but it has been shown in several studies that urine and saliva can also be employed for dengue diagnosis. RDTs for the detection of NS1 antigen and anti-dengue IgG, IgM and IgA in urine and saliva specimens have thus been developed by Standard Diagnostics. The aim of this study was to evaluate the performances these new commercial assays.MethodsTwo panels of clinical specimens were used: one for the evaluation of the NS1-detection devices and the second for the evaluation of the antibody-detection kits. Each panel consisted of urine and saliva specimens collected sequentially from 86 patients with a confirmed dengue infection. A total of 291 saliva and 440 urine samples were included in the NS1-evaluation panel and 530 saliva and 528 urine specimens constituted the antibody-evaluation panel. All samples were tested in parallel by in-house ELISAs and by the commercial RDTs.ResultsThe RDTs demonstrated an overall sensitivity of 15.5 %/27.9 %/10.7 % for NS1/IgG/IgA detection in urine samples and 20.4 %/ 34.8 %/11 %/6.2 % for NS1/IgG/IgM/IgA detection in saliva samples. Compared to the in-house NS1 ELISA, the results obtained with the NS1 RDT demonstrated a good correlation with urine samples (kappa coefficient: 0.88) but not with saliva specimens (kappa coefficient: 0.28). RDTs designed for antibody detection in saliva and urine were extremely specific (100 %), but less sensitive than the in-house ELISAs (i.e., reduction of the overall sensitivity by 12.2 % for the RDT designed for IgG detection in urine and by 23.7 % for the RDT detecting anti-DENV IgM in saliva). IgM were not detected in urine, either by RDT or ELISA.ConclusionsAlthough the RDTs evaluated here offer an apparently attractive approach for dengue diagnosis, this study suggests that these new commercial kits would require further improvement to increase the sensitivity.Electronic supplementary materialThe online version of this article (doi:10.1186/s12879-016-1551-x) contains supplementary material, which is available to authorized users.
Background The World Health Organization (WHO) proposed guidelines on dengue clinical classification in 1997 and more recently in 2009 for the clinical management of patients. The WHO 1997 classification defines three categories of dengue infection according to severity: dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS). Alternative WHO 2009 guidelines provide a cross-sectional classification aiming to discriminate dengue fever from dengue with warning signs (DWWS) and severe dengue (SD). The primary objective of this study was to perform a comparison of two dengue classifications. The secondary objective was to describe the changes of hematological and biochemical parameters occurring in patients presenting with different degrees of severity during the course of the disease, since progression to more severe clinical forms is unpredictable. Methodology/Principal findings We performed a prospective, monocentric, cross-sectional study of hospitalized children in Cambodia, aged from 2 to 15 years old with severe and non-severe dengue. We enrolled 243 patients with acute dengue-like illness: 71.2% were dengue infections confirmed using quantitative reverse transcription PCR or NS1 antigen capture ELISA, of which 87.2% and 9.0% of DF cases were respectively classified DWWS and SD, and 35.9% of DHF were PLOS NEGLECTED TROPICAL DISEASES
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.