The polyphagous shot hole borer (PSHB) is an invasive ambrosia beetle that forms a symbiosis with a new, as-yet-undescribed Fusarium sp., together causing Fusarium dieback on avocado and other host plants in California and Israel. In California, PSHB was first reported on black locust in 2003 but there were no records of fungal damage until 2012, when a Fusarium sp. was recovered from the tissues of several backyard avocado trees infested with PSHB in Los Angeles County. The aim of this study was to determine the plant host range of the beetle–fungus complex in two heavily infested botanical gardens in Los Angeles County. Of the 335 tree species observed, 207 (62%), representing 58 plant families, showed signs and symptoms consistent with attack by PSHB. The Fusarium sp. was recovered from 54% of the plant species attacked by PSHB, indicated by the presence of the Fusarium sp. at least at the site of the entry hole. Trees attacked by PSHB included 11 species of California natives, 13 agriculturally important species, and many common street trees. Survey results also revealed 19 tree species that function as reproductive hosts for PSHB. Additionally, approximately a quarter of all tree individuals planted along the streets of southern California belong to a species classified as a reproductive host. These data suggest the beetle–disease complex potentially may establish in a variety of plant communities locally and worldwide.
1 The ambrosia beetle morphologically identified as Euwallacea fornicatus consists of several cryptic species that exhibit large differences in the DNA sequences of several nuclear and mitochondrial gene regions. 2 Based on these differences, we suggest that there are at least three different species each with distinct phylogeography. 3 Members of this cryptic species complex have invaded many areas outside their native range and cause substantial damage to both agriculture (avocado in particular) and other tree species. 4 Three of these cryptic species have invaded the USA: two species in California and a third species in both Florida and Hawaii. 5 Identification of their native range allows directed search for their natural enemies that may be used in biological control of these tree pests.
Over the past three decades, Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), has become a major worldwide pest of many agricultural and horticultural crops. In response, much time, money, and effort have been put into pure and applied research focusing on the biology and control of this pest. Western flower thrips is native to Western North America and widespread in California. High levels of variation in basic biology, pest status, and resistance to insecticides bring into question the specific status of Western flower thrips. We used nuclear-mitochondrial barcoding to compare DNA sequences of nuclear and mitochondrial genes between Western flower thrips populations across California, looking for association between these unlinked loci. Sequences of D2 domain of 28S and cytochrome c oxidase I gene revealed the existence of two distinct but sympatric genetic entities, and we describe a simple polymerase chain reaction-based method for diagnosing these entities. The complete association of these nuclear and mitochondrial loci in areas of sympatry is indicative of reproductive isolation and the existence of two cryptic species, both of which key out to Western flower thrips by using morphological characters. The finding that Western flower thrips is a complex of two species has important implications for past, current, and most importantly future research on these pests.
The red palm weevil (RPW) is a major pest of palms. It is native to southeast Asia and Melanesia, but in recent decades has vastly expanded its range as the result of multiple accidental anthropogenic introductions into the Middle East, Mediterranean Basin, Caribbean, and U.S.A. Currently regarded as a single species, Rhynchophorus ferrugineus (Olivier), RPW displays remarkable color variation across its range, and consequently has a taxonomic history littered with new species descriptions and synonymization. We compared DNA sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene from RPW populations throughout the native and invaded ranges, to investigate the specific status and invasion history of this serious economic pest, and to identify possible common routes of entry. Analyses of COI haplotype data provide conclusive support, corroborated by sequences of additional nuclear gene regions, for the existence of at least two predominantly allopatric species. The true R. ferrugineus is native only to the northern and western parts of continental southeast Asia, Sri Lanka and the Philippines, and is responsible for almost all invasive populations worldwide. In contrast, the second species, which is currently synonymized under R. ferrugineus and should be resurrected under the name R. vulneratus (Panzer), has a more southern distribution across Indonesia, and is responsible for only one invasive population; that in California, U.S.A. The distribution of COI haplotypes is used to discuss the possible existence of further cryptic species, sources and routes of entry of different invasive populations, and the implications of our findings for current control methods.
BackgroundThe native microflora associated with mosquitoes have important roles in mosquito development and vector competence. Sequencing of bacterial V3 region from 16S rRNA genes across the developmental stages of Culex mosquitoes (early and late larval instars, pupae and adults) was used to test the hypothesis that bacteria found in the larval stage of Culex are transstadially transmitted to the adult stage, and to compare the microbiomes of field-collected versus laboratory-reared mosquitoes.ResultsBeta diversity analysis revealed that bacterial community structure differed among three life stages (larvae, pupae and adults) of Culex tarsalis. Although only ~2 % of the total number of bacterial OTUs were found in all stages, sequences from these OTUs accounted for nearly 82 % of the total bacterial sequences recovered from all stages. Thorsellia (Gammaproteobacteria) was the most abundant bacterial taxon found across all developmental stages of field-collected Culex mosquitoes, but was rare in mosquitoes from laboratory-reared colonies. The proportion of Thorsellia sequences in the microbiomes of mosquito life stages varied ontogenetically with the greatest proportions recovered from the pupae of C. tarsalis and the lowest from newly emerged adults. The microbiome of field-collected late instar larvae was not influenced significantly by differences in the microbiota of the habitat due to habitat age or biopesticide treatments. The microbiome diversity was the greatest in the early instar larvae and the lowest in laboratory-reared mosquitoes.ConclusionsBacterial communities in early instar C. tarsalis larvae were significantly more diverse when compared to late instar larvae, pupae and newly emerged adults. Some of the bacterial OTUs found in the early instar larvae were also found across developmental stages. Thorsellia dominated the bacterial communities in field-collected immature stages but occurred at much lower relative abundance in adults. Differences in microbiota observed in larval habitats did not influence bacterial community profiles of late instar larvae or adults. However, bacterial communities in laboratory-reared C. tarsalis larvae differed significantly from the field. Determining the role of Thorsellia in mosquitoes and its distribution across different species of mosquitoes warrants further investigation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12866-015-0475-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.