Natural‐history collections in museums contain data critical to decisions in biodiversity conservation. Collectively, these specimen‐based data describe the distributions of known taxa in time and space. As the most comprehensive, reliable source of knowledge for most described species, these records are potentially available to answer a wide range of conservation and research questions. Nevertheless, these data have shortcomings, notably geographic gaps, resulting mainly from the ad hoc nature of collecting effort. This problem has been frequently cited but rarely addressed in a systematic manner. We have developed a methodology to evaluate museum collection data, in particular the reliability of distributional data for narrow‐range taxa. We included only those taxa for which there were an appropriate number of records, expert verification of identifications, and acceptable locality accuracy. First, we compared the available data for the taxon of interest to the “background data,” comprised of records for those organisms likely to be captured by the same methods or by the same collectors as the taxon of interest. The “adequacy”of background sampling effort was assessed through calculation of statistics describing the separation, density, and clustering of points, and through generation of a sampling density contour surface. Geographical information systems (GIS) technology was then used to model predicted distributions of species based on abiotic (e.g., climatic and geological) data. The robustness of these predicted distributions can be tested iteratively or by bootstrapping. Together, these methods provide an objective means to assess the likelihood of the distributions obtained from museum collection records representing true distributions. Potentially, they could be used to evaluate any point data to be collated in species maps, biodiversity assessment, or similar applications requiring distributional information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.