Two groups of snakes possess an infrared detection system that is used to create a heat image of their environment. In this Letter we present an explicit reconstruction model, the "virtual lens," which explains how a snake can overcome the optical limitations of a wide aperture pinhole camera, and how ensuing properties of the receptive fields on the infrared-sensitive membrane may explain the behavioral performance of this sensory system. Our model explores the optical quality of the infrared system by detailing how a functional representation of the thermal properties of the environment can be created. The model is easy to implement neuronally and agrees well with available neuronal, physiological, and behavioral data on the snake infrared system.
Interaural time differences allow many animals to perform azimuthal sound localization. Snakes lack a tympanic membrane, external ear openings, and any other superficial indication of an auditory mechanism. They do, however, possess an inner ear with functional cochlea. The oval window is connected through a loss-free osseous lever system to the two, de facto independent, sides of the lower jaw, which typically rest on the substrate. The footfall of prey generates small-amplitude, low propagation velocity, Rayleigh waves in the soil. This type of wave can be described as fluid motion. Accordingly we apply naval-engineering techniques to show that lower-jaw motion gives rise to a neuronal representation of the auditory world with realistic sensitivity and stereo precision.
Multimodal neuronal maps, combining input from two or more sensory systems, play a key role in the processing of sensory and motor information. For such maps to be of any use, the input from all participating modalities must be calibrated so that a stimulus at a specific spatial location is represented at an unambiguous position in the multimodal map. Here we discuss two methods based on supervised spike-timing-dependent plasticity (STDP) to gauge input from different sensory modalities so as to ensure a proper map alignment. The first uses an excitatory teacher input. It is therefore called excitation-mediated learning. The second method is based on an inhibitory teacher signal, as found in the barn owl, and is called inhibition-mediated learning. Using detailed analytical calculations and numerical simulations, we demonstrate that inhibitory teacher input is essential if high-quality multimodal integration is to be learned rapidly. Furthermore, we show that the quality of the resulting map is not so much limited by the quality of the teacher signal but rather by the accuracy of the input from other sensory modalities.
In the majority of venomous snakes, and in many other reptiles, venom is conveyed from the animal's gland to the prey's tissue through an open groove on the surface of the teeth and not through a tubular fang. Here we focus on two key aspects of the grooved delivery system: the hydrodynamics of venom as it interacts with the groove geometry, and the efficiency of the tooth-groove-venom complex as the tooth penetrates the prey's tissue. We show that the surface tension of the venom is the driving force underlying the envenomation dynamics. In so doing, we explain not only the efficacy of the open groove, but also the prevalence of this mechanism among reptiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.