Precise knowledge of the volume and rate of early rapid left ventricular (LV) filling elucidates kinematic aspects of diastolic physiology. The Doppler E wave velocity-time integral (VTI) is conventionally used as the estimate of early, rapid-filling volume; however, this implicitly requires the assumption of a constant effective mitral valve area (EMVA). We sought to evaluate whether the EMVA is truly constant throughout early, rapid filling in 10 normal subjects using cardiac magnetic resonance imaging (MRI) and contemporaneous Doppler echocardiography, which were synchronized via ECG. LV volume measurements as a function of time were obtained via MRI, and transmitral flow values were measured via Doppler echocardiography. The synchronized data were used to predict EMVA as a function of time during early diastole. Validation involved EMVA determination using 1) the short-axis echocardiographic images near the mitral valve leaflet tips, 2) the distance between leaflet tips in the echocardiographic parasternal long-axis view, and 3) the distance between leaflet tips from the MRI LV outflow tract view. Predicted EMVA values varied substantially during early rapid filling, and observed EMVA values agreed well with predictions. We conclude that the EMVA is not constant, and its variation causes LV volume to increase faster than is reflected by the VTI. These results reveal the mechanism of early rapid volumetric increase and directly affect the significance and physiological interpretation of the VTI of the Doppler E wave. Application to subjects in selected pathophysiological subsets is in progress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.