There are millions of small-scale fishers worldwide that rely on coral reefs for their livelihood. Yields from many of these coral reef fisheries, however, have been declining. In Indonesia and other coral reefs worldwide, management approaches are dominated by marine protected areas but other options including gear-restrictions may be feasible and more adaptive to local ecological and social conditions. Yet, there is little data on the impacts and selectivity of fishing gears for coral reef fisheries. In this paper, we present results from a case study on the island of Lombok, where we examine the selectivity and overlap in catch composition of the two main fishing gear types: spearguns and handlines. The catch per unit effort (CPUE) was greater in handlines than spearguns, 10.8 and 9.97 kg trip −1 , respectively. The two gears targeted different fish communities with little overlap in dominant species, suggesting a partitioning of resources; handlines targeted piscivores, whereas spearguns targeted mostly herbivores. Mean trophic level was 3.6 for the handline catch and 2.8 for spearguns, where it was inversely related to CPUE. Spearguns captured more species overall and the number of species increased as the CPUE increased. Length parameters of maturity indicated that neither gear showed signs of (growth) overfishing and fishing grounds dominated by speargun fishers had catches associated with younger ages at first maturity than handlines. Our findings provide local baseline data on the potential utility of gear restrictions as a management tool. Specifically, managers could monitor reefs and reduce handlines when piscivorous fishes are low and on spearguns when species diversity is low or algal abundance is high. Should it become more desirable to implement ecosystem approaches to management that are adaptive to changing ecological and social conditions, these indicators may be used as starting points along with local management preferences of fishers.
1. Periodically harvested closures are a widespread, centuries-old form of fisheries management that protects fish between pulse harvests and can generate high harvest efficiency by reducing fish wariness of fishing gear. However, the ability for periodic closures to also support high fisheries yields and healthy marine ecosystems is uncertain, despite increased promotion of periodic closures for managing fisheries and conserving ecosystems in the Indo-Pacific.2. We developed a bioeconomic fisheries model that considers changes in fish wariness, based on empirical field research, and quantified the extent to which periodic closures can simultaneously maximize harvest efficiency, fisheries yield and conservation of fish stocks.3. We found that periodic closures with a harvest schedule represented by closure for one to a few years between a single pulse harvest event can generate equivalent fisheries yield and stock abundance levels and greater harvest efficiency than achievable under conventional fisheries management with or without a permanent closure.4. Optimality of periodic closures at maximizing the triple objective of high harvest efficiency, high fisheries yield, and high stock abundance was robust to fish life history traits and to all but extreme levels of overfishing. With moderate overfishing, there emerged a trade-off between periodic closures that maximized harvest efficiency and no-take permanent closures that maximized yield; however, the gain in harvest efficiency outweighed the loss in yield for periodic closures when compared with permanent closures. Only with extreme overfishing, where fishing under nonspatial management would reduce the stock to ≤18% of its unfished level, was the harvest efficiency benefit too small for periodic closures to best meet the triple objective compared with permanent closures. Synthesis and applications.We show that periodically harvested closures can, in most cases, simultaneously maximize harvest efficiency, fisheries yield, and fish stock conservation beyond that achievable by no-take permanent closures or nonspatial management. Our results also provide design guidance, indicating that short closure periods between pulse harvest events are most appropriate for well-managed
The nonapeptide arginine vasotocin (AVT) regulates osmotic balance in teleost fishes, but its mechanisms of action are not fully understood. Recently, it was discovered that nonapeptide receptors in teleost fishes are differentiated into two V1a-type, several V2-type, and two isotocin (IT) receptors, but it remains unclear which receptors mediate AVT’s effects on gill osmoregulation. Here, we examined the role of nonapeptide receptors in the gill of the euryhaline Amargosa pupfish ( Cyprinodon nevadensis amargosae) during osmotic acclimation. Transcripts for the teleost V1a-type receptor v1a2 were upregulated over fourfold in gill 24 h after transferring pupfish from 7.5 ppt to seawater (35 ppt) or hypersaline (55 ppt) conditions and downregulated after transfer to freshwater (0.3 ppt). Gill transcripts for the nonapeptide degradation enzyme leucyl-cystinyl aminopeptidase (LNPEP) also increased in fish acclimating to 35 ppt. To test whether the effects of AVT on the gill might be mediated by a V1a-type receptor, we administered AVT or a V1-type receptor antagonist (Manning compound) intraperitoneally to pupfish before transfer to 0.4 ppt or 35 ppt. Pupfish transferred to 35 ppt exhibited elevated gill mRNA abundance for cystic fibrosis transmembrane conductance regulator ( cftr), but that upregulation diminished under V1-receptor inhibition. AVT inhibited the increase in gill Na+/Cl− cotransporter 2 ( ncc2) transcript abundance that occurs following transfer to hypoosmotic environments, whereas V1-type receptor antagonism increased ncc2 mRNAs even without a change in salinity. These findings indicate that AVT acts via a V1-type receptor to regulate gill Cl− transport by inhibiting Cl− uptake and facilitating Cl− secretion during seawater acclimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.