Cyclodextrins act as molecular reactors to change the ratios of the products of reactions of anisole, acetanilide, 3methylanisole, and 3-methylacetanilide with pyridinium dichlorobromate. With anisole and acetanilide, bromination at the para position is favoured over ortho substitution, and the effect is greatest with α-cyclodextrin. In the reactions of the methylanisole and methylacetanilide, the cyclodextrins afford higher yields of monobrominated products and less of the di-and tribromides, and β-cyclodextrin has the greatest effect. These outcomes can be attributed to inclusion of the substrates within the cyclodextrins restricting access of the reagent adjacent to the methoxy and acetamido groups. The yields of 4-bromoanisole, 4-bromoacetanilide, 4-bromo-3-methylanisole, and 4-bromo-3methylacetanilide are thus increased from 73 to 94, 55 to 98, 37 to 86, and 39 to 72%, respectively. Perhaps more significantly, the quantities of the corresponding by-products are substantially reduced, from 27 to 6, 45 to 2, 63 to 14, and 61 to 28%. Since the reactions occur readily in water at ambient temperature, the cyclodextrins make them very efficient.
The aromatic halogenation of simple alkylbenzenes with chlorine proceeds smoothly in acetic acid but is much less efficient in less polar solvents. By contrast chlorination of omega-phenylalkylamines, such as 3-phenylpropylamine, occurs readily in either acetic acid, carbon tetrachloride or alpha,alpha,alpha-trifluorotoluene, and in the latter solvents gives high proportions of ortho-chlorinated products. These effects are attributable to the involvement of N-chloroamines as reaction intermediates, with intramolecular delivery of the chlorine electrophile. Omega-phenylalkylamides, such as 3-phenylpropionamide, also easily undergo aromatic chlorination in carbon tetrachloride and alpha,alpha,alpha-trifluorotoluene. These reactions generally show a first-order dependence on the substrate concentration, but not on the amount of chlorine. With carbon tetrachloride, very similar reaction rates are observed with chlorine concentrations ranging from 0.1-1.5 M. In alpha,alpha,alpha-trifluorotoluene, the rates reach a plateau at a chlorine concentration of approximately 0.2 M. These features indicate that the reactions proceed via the formation of intermediates which evidence suggests may be the corresponding O-chloroimidates. Irrespective of the mechanistic details, the reactions are remarkably rapid, being faster than analogous reactions in acetic acid and three to four orders of magnitude more rapid than reactions of simple alkylbenzenes in carbon tetrachloride. Therefore, chlorination of the amines and amides may be accomplished without the need for highly polar solvents, added catalysts or large excesses of chlorine, which are often employed for electrophilic aromatic substitutions. Although the use of carbon tetrachloride is becoming increasingly impractical due to environmental concerns, the trifluorotoluene is a suitable alternative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.