Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10 nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3° from the Ge〈110〉 directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h−1. This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits.
Determining the nature of the electronic phases that compete with superconductivity in high-transition-temperature (high-T(c)) superconductors is one of the deepest problems in condensed matter physics. One candidate is the 'stripe' phase, in which the charge carriers (holes) condense into rivers of charge that separate regions of antiferromagnetism. A related but lesser known system is the 'spin ladder', which consists of two coupled chains of magnetic ions forming an array of rungs. A doped ladder can be thought of as a high-T(c) material with lower dimensionality, and has been predicted to exhibit both superconductivity and an insulating 'hole crystal' phase in which the carriers are localized through many-body interactions. The competition between the two resembles that believed to operate between stripes and superconductivity in high-T(c) materials. Here we report the existence of a hole crystal in the doped spin ladder of Sr14Cu24O41 using a resonant X-ray scattering technique. This phase exists without a detectable distortion in the structural lattice, indicating that it arises from many-body electronic effects. Our measurements confirm theoretical predictions, and support the picture that proximity to charge ordered states is a general property of superconductivity in copper oxides.
The widely used 'silicon-on-insulator' (SOI) system consists of a layer of single-crystalline silicon supported on a silicon dioxide substrate. When this silicon layer (the template layer) is very thin, the assumption that an effectively infinite number of atoms contributes to its physical properties no longer applies, and new electronic, mechanical and thermodynamic phenomena arise, distinct from those of bulk silicon. The development of unusual electronic properties with decreasing layer thickness is particularly important for silicon microelectronic devices, in which (001)-oriented SOI is often used. Here we show--using scanning tunnelling microscopy, electronic transport measurements, and theory--that electronic conduction in thin SOI(001) is determined not by bulk dopants but by the interaction of surface or interface electronic energy levels with the 'bulk' band structure of the thin silicon template layer. This interaction enables high-mobility carrier conduction in nanometre-scale SOI; conduction in even the thinnest membranes or layers of Si(001) is therefore possible, independent of any considerations of bulk doping, provided that the proper surface or interface states are available to enable the thermal excitation of 'bulk' carriers in the silicon layer.
Poly(3-hexylthiophene) (P3HT) brushes on silicon dioxide (SiO 2 ) were prepared using a click reaction between ethynyl-terminated P3HT and an azide self-assembled monolayer (SAM). Regioregular ethynyl-terminated P3HT with molecular weight of 5900 g mol À1 and polydispersity of 1.2 was synthesized by catalyst-transfer polycondensation using Grignard metathesis mediated by a nickelbased catalyst. The azide SAM was prepared from bifunctional molecules containing azide and siloxane as click reaction precursor and surface linker, respectively. The P3HT brushes were characterized by atomic force microscopy, ellipsometry, X-ray photoelectron spectroscopy, infrared reflection absorption spectroscopy, and UV-visible spectroscopy. The grafting of P3HT brushes was studied as a function of click reaction time and the growth of the brushes is governed by a diffusioncontrolled process. P3HT brushes were prepared on pre-fabricated field-effect transistor structures in order to probe the electrical properties of the brushes. The versatile synthetic methodology developed in this work can be generalized to prepare a wide variety of semiconducting conjugated polymer brushes on oxide surfaces relevant to organic electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.