Cholinesterases present homologies with some cell adhesion molecules; however, it is unclear whether and how they perform adhesive functions. Here, we provide the first direct evidence showing that neurite growth in vitro from various neuronal tissues of the chick embryo can be modified by some, but not all, anticholinesterase agents. By quantifying the neuritic G4 antigen in tectal cell cultures, the effect of anticholinesterases on neurite growth is directly compared with their cholinesterase inhibitory action. BW 284C51 and ethopropazine, inhibiting acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), respectively, strongly decrease neurite growth in a dose-dependent manner. However, echothiophate which inhibits both cholinesterases, does not change neuritic growth. These quantitative data are supplemented by morphological observations in retinal explant cultures grown on striped laminin carpets, viz., defasciculation of neurite bundles by BW 284C51 and Bambuterol occurs, indicating that these drugs disturb adhesive mechanisms. These data strongly suggest that a) cholinesterases can participate in regulating axonal growth, b) both AChE and BChE can perform such a nonsynaptic function, and c) this function is not the result of the enzyme activity per se, since at least one drug was found that inhibits all cholinesterase activities but not neurite growth. Thus, a secondary site on cholinesterase molecules must be responsible for adhesive functions.
The retinal pigment epithelium (RPE) is indispensable for vertebrate eye development and vision. In the classical model of optic vesicle patterning, the surface ectoderm produces fibroblast growth factors (FGFs) that specify the neural retina (NR) distally, whereas TGFβ family members released from the proximal mesenchyme are involved in RPE specification. However, we previously proposed that bone morphogenetic proteins (BMPs) released from the surface ectoderm are essential for RPE specification in chick. We now show that the BMP-and Wnt-expressing surface ectoderm is required for RPE specification. We reveal that Wnt signalling from the overlying surface ectoderm is involved in restricting BMP-mediated RPE specification to the dorsal optic vesicle. Wnt2b is expressed in the dorsal surface ectoderm and subsequently in dorsal optic vesicle cells. Activation of Wnt signalling by implanting Wnt3a-soaked beads or inhibiting GSK3β at optic vesicle stages inhibits NR development and converts the entire optic vesicle into RPE. Surface ectoderm removal at early optic vesicle stages or inhibition of Wnt, but not Wnt/β-catenin, signalling prevents pigmentation and downregulates the RPE regulatory gene Mitf. Activation of BMP or Wnt signalling can replace the surface ectoderm to rescue MITF expression and optic cup formation. We provide evidence that BMPs and Wnts cooperate via a GSK3β-dependent but β-catenin-independent pathway at the level of pSmad to ensure RPE specification in dorsal optic vesicle cells. We propose a new dorsoventral model of optic vesicle patterning, whereby initially surface ectoderm-derived Wnt signalling directs dorsal optic vesicle cells to develop into RPE through a stabilising effect of BMP signalling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.