Spores of Bacillus subtilis have a thick outer layer of relatively insoluble protein called the coat, which protects spores against a number of treatments and may also play roles in spore germination. However, elucidation of precise roles of the coat in spore properties has been hampered by the inability to prepare spores lacking all or most coat material. In this work, we show that spores of a strain with mutations in both the cotE and gerE genes, which encode proteins involved in coat assembly and expression of genes encoding coat proteins, respectively, lack most extractable coat protein as seen by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as the great majority of the coat as seen by atomic force microscopy. However, the cotE gerE spores did retain a thin layer of insoluble coat material that was most easily seen by microscopy following digestion of these spores with lysozyme. These severely coat-deficient spores germinated relatively normally with nutrients and even better with dodecylamine but not with a 1:1 chelate of Ca 2؉ and dipicolinic acid. These spores were also quite resistant to wet heat, to mechanical disruption, and to treatment with detergents at an elevated temperature and pH but were exquisitely sensitive to killing by sodium hypochlorite. These results provide new insight into the role of the coat layer in spore properties.
Spores of Bacillus subtilis spoVF strains that cannot synthesize dipicolinic acid (DPA) but take it up during sporulation were prepared in medium with various DPA concentrations, and the germination and viability of these spores as well as the DPA content in individual spores were measured. Levels of some other small molecules in DPA-less spores were also measured. These studies have allowed the following conclusions. (i) Spores with no DPA or low DPA levels that lack either the cortex-lytic enzyme (CLE) SleB or the receptors that respond to nutrient germinants could be isolated but were unstable and spontaneously initiated early steps in spore germination. (ii) Spores that lacked SleB and nutrient germinant receptors and also had low DPA levels were more stable.
The Category B agents, ricin and shiga toxin (Stx), are RNA N-glycosidases that target a highly conserved adenine residue within the sarcin-ricin loop of eukaryotic 28S ribosomal RNA. In an effort to identify small-molecule inhibitors of these toxins that could serve as lead compounds for potential therapeutics, we have developed a simple Vero cell-based high-throughput cytotoxicity assay and have used it to screen ∼81,300 compounds in 17 commercially available chemical libraries. This initial screen identified ∼300 compounds with weak (≥30-<50%), moderate (≥50-<80%), or strong (≥80%) ricin inhibitory activity. Secondary analysis of 244 of these original "hits" was performed, and 20 compounds that were capable of reducing ricin cytotoxicity by >50% were chosen for further study. Four compounds demonstrated significant dose-dependent ricin inhibitory activity in the Vero cell-based assay, with 50% effective inhibitory concentration (EC 50 ) values ranging from 25 to 60 μM. The same 20 compounds were tested in parallel for the ability to inhibit ricin's and Stx1's enzymatic activities in an in vitro translation reaction. Three of the 20 compounds, including the most effective compound in the cell-based assay, had discernible anti-toxin activity. One compound in particular, 4-fluorophenyl methyl 2-(furan-2-yl)quinoline-4-carboxylate ("compound 8"), had 50% inhibitory concentration (IC 50 ) of 30 μM, a value indicating > 10-fold higher potency than is the case for previously described ricin-Stx1 inhibitors. Computer modeling predicted that compound 8 is capable of docking within the ricin active site. In conclusion, we have used a simple highthroughput cell-based method to identify several new small-molecule inhibitors of ricin and Stx.
In an effort to isolate and characterize bioactive secondary metabolites from Trichodesmium thiebautii blooms, collected cyanobacteria biomass was subjected to bioassay-guided extraction and fractionation using the human colon cancer cell line HCT-116, resulting in the isolation and subsequent structure characterization of a linear polyketide trichophycin A (1). The planar structure of 1 was completed using 1D and 2D NMR spectroscopy and high-resolution electrospray ionization mass spectrometry (HRESIMS). Trichophycin A was moderately toxic against the murine neuroblastoma cell line Neuro-2A (EC50: 6.5 μM) and HCT-116 cells (EC50: 11.7 μM). Trichophycin A was significantly more cytotoxic than the previously isolated polyketides trichotoxin A and trichotoxin B. These cytotoxicity observations suggest that toxicity may be related to the polyol character of these polyketide compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.