The past 25 years has seen phenomenal growth of interest in judgemental approaches to forecasting and a significant change of attitude on the part of researchers to the role of judgement. While previously judgement was thought to be the enemy of accuracy, today judgement is recognised as an indispensable component of forecasting and much research attention has been directed at understanding and improving its use. Human judgement can be demonstrated to provide a significant benefit to forecasting accuracy but it can also be subject to many biases. Much of the research has been directed at understanding and managing these strengths and weaknesses. An indication of the explosion of research interest in this area can be gauged by the fact that over 200 studies are referenced in this review.
Scenario planning can be a useful and attractive tool in strategic management. In a rapidly changing environment it can avoid the pitfalls of more traditional methods. Moreover, it provides a means of addressing uncertainty without recourse to the use of subjective probabilities, which can suffer from serious cognitive biases. However, one underdeveloped element of scenario planning is the evaluation of alternative strategies across the range of scenarios. If this is carried out informally then inferior strategies may be selected, while those formal evaluation procedures that have been suggested in relation to scenario planning are unlikely to be practical in most contexts. This paper demonstrates how decision analysis can be used to structure the strategy evaluation process in a way which avoids the problems associated with earlier proposals. The method is flexible, versatile and transparent and leads to a clear and documented rationale for the selection of a particular strategy.
Decision makers and forecasters often receive advice from different sources including human experts and statistical methods. This research examines, in the context of stock price forecasting, how the apparent source of the advice affects the attention that is paid to it when the mode of delivery of the advice is identical for both sources. In Study 1, two groups of participants were given the same advised point and interval forecasts. One group was told that these were the advice of a human expert and the other that they were generated by a statistical forecasting method. The participants were then asked to adjust forecasts they had previously made in light of this advice. While in both cases the advice led to improved point forecast accuracy and better calibration of the prediction intervals, the advice which apparently emanated from a statistical method was discounted much more severely. In Study 2, participants were provided with advice from two sources. When the participants were told that both sources were either human experts or both were statistical methods, the apparent statistical-based advice had the same influence on the adjusted estimates as the advice that appeared to come from a human expert. However when the apparent sources of advice were different, much greater attention was paid to the advice that apparently came from a human expert. Theories of advice utilization are used to identify why the advice of a human expert is likely to be preferred to advice from a statistical method.
Publisher's copyright statement:Additional information:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details. In this paper we review and analyse scenario planning as an aid to anticipation of the future under conditions of low predictability. We examine how successful the method is in mitigating issues to do with inappropriate framing, cognitive and motivational bias, and inappropriate attributions of causality. Although we demonstrate that the scenario methods contain weaknesses, we identify a potential for improvement. Four general principles that should help to enhance the role of scenario planning when predictability is low are discussed: (i) challenging mental frames, (ii) understanding human motivations, (iii) augmenting scenario planning through adopting the approach of crisis management, and (iv), assessing the flexibility, diversity, and insurability of strategic options in a structured option-against-scenario evaluation.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.