[1] Instrumentation on the Met Office C-130 aircraft measured aerosol physical and optical properties during the Southern African Regional Science Initiative (SAFARI 2000) in September 2002 while flying from Windhoek, Namibia. Filter measurements of aged regional haze suggest a ratio of apparent elemental carbon (EC a ) to organic carbon (OC) of 0.12 ± 0.02 and mass fractions of 5% EC a , 25% inorganic compounds, and 70% organic matter (OC plus associated elements). The submicron size distribution of aged regional haze may be fitted with three lognormal distributions with geometric mean radii (r n ) of 0.12 ± 0.01, 0.26 ± 0.01, and 0.80 ± 0.01 mm and geometric standard deviations (s) of 1.3 ± 0.1, 1.5 ± 0.1, and 1.9 ± 0.4. Measurements over 2500 km from the emission region show similar r n and s for the smallest two modes, while the third mode is absent presumably as a result of sedimentation. At a wavelength (l) of 0.55 mm, effective medium approximations suggest a refractive index of 1.54 À 0.018i for aged regional haze aerosol. The single scattering albedo (w ol ) derived using this refractive index and measured size distributions are consistent with those from the nephelometer and Particle Soot Absorption Photometer (PSAP). The optical parameters for aged regional haze a few days old are specific extinction coefficient (k el=0.55 ) of 5.0 ± 0.8 m 2 g À1, asymmetry factor (g l=0.55 ) of 0.59 ± 0.02, and w ol=0.55 of 0.91 ± 0.04. Measurements of fresh biomass burning aerosol a few minutes old show smaller more absorbing particles. Vertical profiles of carbon monoxide, aerosol concentration, and aerosol scattering show a good correlation. Over land, aerosols become well mixed in the vertical from the surface to approximately 500 hPa. Over ocean, the aerosols can be separated from underlying stratocumulus cloud by a clear gap and a strong inversion, which may limit the indirect effect.
Original article can be found at: http://www.atmos-chem-phys.net/10/issue10.html Copyright - the authors. Authors grant any third party the right to use the article freely as long as its original authors and citation details are identified. The article and any associated published material is distributed under the Creative Commons Attribution 3.0 License.Aerosol particle size distributions were measured below and above a tropical rainforest canopy in Borneo, Malaysia, in June/July 2008 using the WIBS-3: a single particle dual channel fluorescence spectrometer. Material in the size range 0.8???20 ??m was characterized according to optical equivalent diameter (DP), morphology and fluorescence at 310???400 nm and 400???600 nm following excitation at 280 nm and 370 nm respectively. Particles fluorescent after both excitations are likely to be fluorescent primary biological aerosol particles (FBAP). Measured FBAP number concentration (NFBAP) at both sites exhibited clear diurnal cycles. The largest variability was observed in the understorey, where NFBAP reached a minimum of 50???100 L???1 in late morning. In mid afternoon it exhibited strong transient fluctuations as large as 4000 L???1 that were followed by sustained concentrations of 1000???2500 L???1 that reduced steadily between midnight and sunrise. Above the canopy FBAP number ranged from 50???100 L???1 during the daytime to 200???400 L???1 at night but did not exhibit the transient enhancements seen in the understorey. The strong FBAP fluctuations were attributed to the release of fungal spores below the canopy and appeared to be linked to elevated relative humidity. The mean FBAP number fraction in the size range 0.8 ??m
We describe a prototype low-cost multi-channel aerosol fluorescence sensor designed for unattended deployment in medium to large area bio-aerosol detection networks. Individual airborne particles down to ~1mum in size are detected and sized by measurement of light scattered from a continuous-wave diode laser (660nm). This scatter signal is then used to trigger the sequential firing of two xenon sources which irradiate the particle with UV pulses at ~280 nm and ~370 nm, optimal for excitation of bio-fluorophores tryptophan and NADH (nicotinamide adenine dinucleotide) respectively. For each excitation wavelength, fluorescence is detected across two bands embracing the peak emissions of the same bio-fluorophores. Current measurement rates are up to ~125 particles/s, corresponding to all particles for concentrations up to 1.3 x 104 particles/l. Developments to increase this to ~500 particles/s are in hand. Device sensitivity is illustrated in preliminary data recorded from aerosols of E.coli, BG spores, and a variety of non-biological materials.
Ice particle interarrival times have been measured with a fast forward scattering spectrometer probe (FSSP). The distribution of interarrival times is bimodal instead of the exponential distribution expected for a Poisson process. The interarrival time modes are located at ϳ10 Ϫ2 and ϳ10 Ϫ4 s. This equates to horizontal spacings on both the centimeter and meter scales. The characteristics of the interarrival times are well modeled by a Markov chain process that couples together two independent Poisson processes operating at different scales. The possibility that ice crystals shattering on the probe tip causes the bimodal interarrival times is explored and cannot be ruled out. If the observations are indicating real spacings of particles in clouds, then the observations show very localized (centimeter scale) concentrations of ϳ100 s cm Ϫ3 embedded within an average concentration of typically ϳ1 cm Ϫ3. If the localized high concentrations are produced by the ice crystals shattering, then the concentration measured by the FSSP is overcounted by a factor of 5 in the worst case measured here, but more typically by a factor of 2. This uncertainty in concentration will adversely affect the predicted radiative influence of these clouds.
The effective ice-particle density, parametrized through a mass-dimension relation, is widely used in ice microphysical schemes for weather and climate models. In this study, we use aircraft-based observations in mid-latitude cirrus taken during the Constrain field programme in 2010. The low temperatures and a humidity often close to ice saturation meant that the typical ice particles observed were small (maximum dimension 20-800 µm) and ice water contents were low (0.001-0.05 g m −3 ). Two new instruments are included in this study: the Small Ice Detector Mark-2 (SID-2) and the deep-cone Nevzorov Total Water Content probe. SID-2 is a new singleparticle light-scattering instrument and was used to identify and size small ice particles (10-150 µm). The deep-cone Nevzorov probe is shown to be able to collect small ice masses with sufficient sensitivity. The focus of this article is on the effective density of small ice particles (both pristine ice crystals and small aggregates up to 600 µm maximum dimension). Due to instrument limitations in previous studies, the effective density of small ice particles is questionable.Aircraft flights in six cirrus cases provided ice-particle measurements throughout the depth of the cirrus. The particle size distribution (PSD) was mostly bimodal. The smaller ice-crystal mode dominated the PSD near cloud top and the larger ice-aggregate mode dominated near cloud base. A mass-dimension relation valid for both ice crystals and aggregates was found that provided a best fit to the observations. For small ice particles (less than 70 µm diameter) the density is constant (700 kg m −3 ), while for larger ice crystals or aggregates the mass-dimension relation is m(D) = 0.0257D 2.0 . These measurements allow testing of the diagnostic split between ice crystals and aggregates used in the Met Office Unified Model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.