Ca v 1.3 (␣1D) L-type Ca2ϩ channels have been implicated in substantia nigra (SN) dopamine (DA) neuron pacemaking and vulnerability to Parkinson's disease. These effects may arise from the depolarizing current and cytoplasmic Ca 2ϩ elevation produced by Ca v 1.3 channels at subthreshold membrane potentials. However, the assumption that the Ca 2ϩ selectivity of Ca v 1.3 channels is essential has not been tested. In this study the properties of SN DA neuron L-type Ca 2ϩ channels responsible for driving pacemaker activity in juvenile rat brain slices were probed by replacing native channels blocked with the dihydropyridine nimodipine with virtual channels generated by dynamic clamp. Surprisingly, virtual L-type channels that mimic native and recombinant Ca v 1.3 channels supported pacemaker activity even though dynamic clamp currents are not carried by Ca 2ϩ . This effect is specific because pacemaker activity could not be restored by tonic current injection, virtual nonselective leak channels or virtual NMDA receptors, which share with L-type channels a negative slope conductance region in their current-voltage (I-V) curve. Altering virtual channels showed that the production of pacemaker activity depended on the characteristic voltage dependence of DA neuron L-type channels, while activation kinetics and reversal potential were not critical parameters. Virtual L-type channels also supported slow oscillatory potentials and enhanced firing rate during evoked bursts. Thus, Ca v 1.3 channel voltage dependence, rather than Ca 2ϩ selectivity, drives pacemaker activity and amplifies bursts in SN DA neurons.
The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds < or =43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.
Biological gain mechanisms regulate the sensitivity and dynamics of signaling pathways at the systemic, cellular, and molecular levels. In the sympathetic nervous system, gain in sensory-motor feedback loops is essential for homeostatic regulation of blood pressure and body temperature. This study shows how synaptic convergence and plasticity can interact to generate synaptic gain in autonomic ganglia and thereby enhance homeostatic control. Using a conductance-based computational model of an idealized sympathetic neuron, we simulated the postganglionic response to noisy patterns of presynaptic activity and found that a threefold amplification in postsynaptic spike output can arise in ganglia, depending on the number and strength of nicotinic synapses, the presynaptic firing rate, the extent of presynaptic facilitation, and the expression of muscarinic and peptidergic excitation. The simulations also showed that postsynaptic refractory periods serve to limit synaptic gain and alter postsynaptic spike timing. Synaptic gain was measured by stimulating dissociated bullfrog sympathetic neurons with 1-10 virtual synapses using a dynamic clamp. As in simulations, the threshold synaptic conductance for nicotinic excitation of firing was typically 10-15 nS, and synaptic gain increased with higher levels of nicotinic convergence. Unlike the model, gain in neurons sometimes declined during stimulation. This postsynaptic effect was partially blocked by 10 microM Cd2+, which inhibits voltage-dependent calcium currents. These results support a general model in which the circuit variations observed in parasympathetic and sympathetic ganglia, as well as other neural relays, can enable functional subsets of neurons to behave either as 1:1 relays, variable amplifiers, or switches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.