Understanding vascular pathologies requires insight in the structure and function, and, hence, an imaging technique combining subcellular resolution, large penetration depth, and optical sectioning. We evaluated the applicability of two-photon laser-scanning microscopy (TPLSM) in large elastic and small muscular arteries under physiological conditions. Elastic (carotid) and muscular (uterine, mesenteric) arteries of C57BL/6 mice were mounted in a perfusion chamber. TPLSM was used to assess the viability of arteries and to visualize the structural components elastin, collagen, nuclei, and endothelial glycocalyx (EG). Functionality was determined using diameter changes in response to noradrenaline and acetylcholine. Viability and functionality were maintained up to 4 h, enabling the assessment of structure-function relationships. Structural vessel wall components differed between elastic and muscular arteries: size (1.3 vs. 2.1 µm) and density (0.045 vs. 0.57 µm–2) of internal elastic lamina fenestrae, smooth muscle cell density (3.50 vs. 1.53 µm–3), number of elastic laminae (3 vs. 2), and adventitial collagen structure (tortuous vs. straight). EG in elastic arteries was 4.5 µm thick, covering 66% of the endothelial surface. TPLSM enables visualization and quantification of subcellular structures in vital and functional elastic and muscular murine arteries, allowing unraveling of structure-function relationships in healthy and diseased arteries.
We evaluated CNA35 as a collagen marker in healthy and atherosclerotic arteries of mice after both ex vivo and in vivo administration and as a molecular imaging agent for the detection of atherosclerosis. CNA35 conjugated with fluorescent Oregon Green 488 (CNA35/OG488) was administered ex vivo to mounted viable muscular (uterine), elastic (carotid), and atherosclerotic (carotid) arteries and fresh arterial rings. Two-photon microscopy was used for imaging. CNA35/OG488 labeling in healthy elastic arteries was compared with collagen type I, III, and IV antibody labeling in histologic sections. For in vivo labeling experiments, CNA35/OG488 was injected intravenously in C57BL6/J and apolipoprotein E(-/-) mice. Ex vivo CNA35/OG488 strongly labeled collagen in the tunica adventitia, media, and intima of muscular arteries. In healthy elastic arteries, tunica adventitia was strongly labeled, but labeling in tunica media and intima was prevented by endothelium and elastic laminae. Histology confirmed the affinity of CNA35 for type I, III, and IV collagen in arteries. Strong CNA35/OG488 labeling was found in atherosclerotic plaques. In vivo applied CNA35/OG488 minimally labeled the tunica intima of healthy carotid arteries. Atherosclerotic plaques in apolipoprotein E(-/-) mice exhibited large uptake. CNA35/OG488 imaging in organs revealed endothelium as a limiting barrier for in vivo uptake. CNA35/OG488 is a good molecular imaging agent for atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.