This study investigates the link between adaptation to biocides and antibiotics in Pseudomonas aeruginosa. An enrichment continuous culture of P. aeruginosa NCIMB 10421 (MIC 25 mg BKC l−1) was operated (D=0.04 h−1, 792 h) with added benzalkonium chloride (BKC). A derivative, PA-29 (696 h), demonstrated a >12-fold decrease in sensitivity to the biocide (MIC >350 mg BKC l−1). The variant demonstrated a 256-fold increase in resistance to ciprofloxacin, with a mutation in the gyrA gene (Thr-83→Ile). Similarly, culturing of the original strain in a continuous-culture system with ciprofloxacin selection pressure led to the evolution of BKC-adapted populations (MIC 100 mg BKC l−1). Efflux pump activity predominantly contributed to the developed phenotype of PA-29. An amino acid substitution (Val-51→Ala) in nfxB, the Mex efflux system regulator gene, was observed for PA-29. Overexpression of both MexAB-OprM and MexCD-OprJ was recorded for PA-29. Similarly, mexR, a repressor of the Mex system, was downregulated. Competition studies were carried out in continuous culture between PA-29 and the original strain (in the presence of subinhibitory concentrations of BKC). The outcome of competition was influenced by the concentration of biocide used and the nature of limiting nutrient. The inclusion of 1 mg BKC l−1 in the medium feed was sufficient to select (S=0.011) for the BKC-adapted strain in magnesium-limited culture. Conversely, the presence of 10 mg BKC l−1 in the medium supply was insufficient to select for the same organism (S=−0.017) in the glucose-limited culture. These results indicate the importance of environmental conditions on selection and maintenance of biocide adaptation.
Antibiotic resistance is an increasingly serious threat to global health. Consequently, the development of non-antibiotic based therapies and disinfectants, which avoid induction of resistance, or cross-resistance, is of high priority. We report the synthesis of a biocidal complex, which is produced by the reaction between ionic oxidizable salts—iodide and thiocyanate—in the presence of hydrogen peroxide as an oxidation source. The reaction generates bactericidal reactive oxygen and iodine species. In this study, we report that the iodo-thiocyanate complex (ITC) is an effective bactericidal agent with activity against planktonic and biofilm cells of Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and methicillin-resistant S. aureus) bacteria. The minimum bactericidal concentrations and the minimum biofilm eradication concentrations of the biocidal composite were in the range of 7.8–31.3 and 31.3–250 μg ml−1, respectively. As a result, the complex was capable to cause a rapid cell death of planktonic test cultures at between 0.5 and 2 h, and complete eradication of dual and mono-species biofilms between 30 s and 10 min. Furthermore, the test bacteria, including a MRSA strain, exposed to the cocktail failed to develop resistance after serial passages. The antimicrobial activity of the ITC appears to derive from the combinational effect of the powerful species capable of oxidizing the essential biomolecules of bacteria. The use of this composition may provide an effective and efficient method for killing potential pathogens, as well as for disinfecting and removing biofilm contamination.
Novel biocides, which avoid the induction of cross-resistance to antibiotics, are an urgent societal requirement. Here, we compared the cytotoxic and bactericidal effects of a new antimicrobial agent, the iodo-thiocyanate complex (ITC), with those of the common antiseptics, hydrogen peroxide (HO), povidone iodine (PVP-I) and Lugol's iodine (Lugol). The antimicrobials were co-incubated for 10 min with HeLa and Escherichia coli cells in the presence and absence of organic matter (Dulbecco's modified Eagle's medium, supplemented with 10% fetal bovine serum). The cytotoxic concentrations of ITC were equivalent to its bactericidal concentrations (7.8 μg ml). By contrast, cytotoxic effects of HO, PVP-I and Lugol were apparent at concentrations lower than their bactericidal concentrations (250, 250 and 125 μg ml, respectively). The cellular effects of ITC were not quenched by organic matter, unlike the other antiseptics. ITC, PVP-I and Lugol had hemolytic effect on horse erythrocytes at high concentrations, while HO showed no hemolysis. ITC, at 30 or 300 μg ml, did not cause DNA breakage in HeLa cells as assessed by an in vitro comet assay in the absence of S9 metabolic activation, whereas HO caused extensive single-strand DNA breaks. The pronounced antimicrobial potency of ITC and its favorable cytotoxicity profile suggests that ITC should be considered for antiseptic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.