Osseointegration of surface-modified polyetheretherketone (PEEK) implants was studied in vivo. A total of 18 cylinder-shaped PEEK implants were inserted in the femurs of nine New Zealand rabbits; half were coated with nanocrystalline hydroxyapatite (nanoHA) and half were uncoated controls. Healing time was 6 weeks. Samples were retrieved with the implant and surrounding tissue, processed to cut and ground sections, and analyzed histomorphometrically. The implant surfaces were analyzed with optical interferometry, scanning electron microscopy (SEM), atomic force microscopy, and X-ray photoelectron spectroscopy (XPS). NanoHA-coated PEEK surfaces had lower height deviation (Sa) than controls [mean ± SD: 0.41 μm (± 0.14) vs. 0.96 μm (± 0.28)]. SEM images showed the nanoHA crystals as a thin layer on the polymer surface. XPS analysis of the coated implants showed a Ca/P ratio of 1.67. Histomorphometry indicated that the nanoHA-coated implants had more bone-to-implant contact [16% (± 4.7) vs. 13% (± 9.3)] and more bone area [52% (± 9.5) vs. 45% (± 11.9)]. We found no difference between smooth nanoHA-coated cylinder-shaped PEEK implants and uncoated controls. However, higher mean bone-to-implant contact indicated better osseointegration in the coated implants than in the uncoated controls. The large number of lost implants was interpreted as a lack of primary stability due to implant design.
A two-step process using liquid crystalline phases combined with controlled postcrystallization for the preparation of bone-like apatite has been developed. First, amorphous calcium phosphate (ACP) spherules with a diameter of 10.8 ± 1.4 nm and specific surface area (SSA) in the range of 150–170 m2/g were synthesized within a reverse hexagonal liquid crystalline (LC) phase. Second, the ACP spherules were dispersed and aged in Milli-Q water, where they crystallized into poorly crystalline apatite (PCA). The addition of heparin during aging was explored, which was shown to retard the ACP – PCA conversion. The particle formation within the LC phase was monitored using synchrotron small-angle X-ray scattering, and the formed materials were characterized by X-ray diffraction, conventional and high-resolution transmission electron microscopy, nitrogen adsorption, thermogravimetry with infrared-coupled analysis, and Raman spectroscopy. The PCA formed using the LC–aging route presented bone-resembling features, such as Ca2+ and OH– deficiency, CO3
2- substitution, poor crystallinity, and ultrahigh SSA of 356 m2/g. The resulting particles were compared to hydroxyapatite synthesized via a conventional water-based precipitation method. The LC–aging route exhibited excellent controllability over the CaP crystallization, which enabled facile tailoring of the resulting material properties for different types of application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.