Anomalous proximity effects have been observed in adhesive systems ranging from proteins, bacteria, and gecko feet suspended over semiconductor surfaces to interfaces between graphene and different substrate materials. In the latter case, long-range forces are evidenced by measurements of non-vanishing stress that extends up to micrometer separations between graphene and the substrate. State-of-the-art models to describe adhesive properties are unable to explain these experimental observations, instead underestimating the measured stress distance range by 2-3 orders of magnitude. Here, we develop an analytical and numerical variational approach that combines continuum mechanics and elasticity with quantum many-body treatment of van der Waals dispersion interactions. A full relaxation of the coupled adsorbate/substrate geometry leads us to conclude that wavelike atomic deformation is largely responsible for the observed long-range proximity effect. The correct description of this seemingly general phenomenon for thin deformable membranes requires a direct coupling between quantum and continuum mechanics.
We present a simple open-source semi-intrusive computational method to propagate uncertainties through hyperelastic models of soft tissues. The proposed method is up to two orders of magnitude faster than the standard Monte Carlo method. The material model of interest can be altered by adjusting few lines of (FEniCS) code. The method is able to (1) provide the user with statistical confidence intervals on quantities of practical interest, such as the displacement of a tumour or target site in an organ; (2) quantify the sensitivity of the response of the organ to the associated parameters of the material model. We exercise the approach on the determination of a confidence interval on the motion of a target in the brain. We also show that for the boundary conditions under consideration five parameters of the Ogden-Holzapfel-like model have negligible influence on the displacement of the target zone compared to the three most influential parameters. The benchmark problems and all associated data are made available as supplementary material.
In this paper we demonstrate the ability of a derivative-driven Monte Carlo estimator to accelerate the propagation of uncertainty through two high-level non-linear finite element models. The use of derivative information amounts to a correction to the standard Monte Carlo estimation procedure that reduces the variance under certain conditions. We express the finite element models in variational form using the high-level Unified Form Language (UFL). We derive the tangent linear model automatically from this high-level description and use it to efficiently calculate the required derivative information. To study the effectiveness of the derivative-driven method we consider two stochastic PDEs; a onedimensional Burgers equation with stochastic viscosity and a three-dimensional geometrically non-linear Mooney-Rivlin hyperelastic equation with stochastic density and volumetric material parameter. Our results show that for these problems the first-order derivative-driven Monte Carlo method is around one order of magnitude faster than the standard Monte Carlo method and at the cost of only one extra tangent linear solution per estimation problem. We find similar trends when comparing with a modern non-intrusive multi-level polynomial chaos expansion method. We parallelise the task of the repeated forward model evaluations across a cluster using the ipyparallel and mpi4py software tools. A complete working example showing the solution of the stochastic viscous Burgers equation is included as supplementary material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.