The rising demand for high power battery systems for the electric mobility requires the connection of a large number of cells. Due to the functionality of the cell chemistry, a combination of copper and aluminium is necessary. The differing material properties like thermal conductivity as well as the formation of intermetallic phases are challenging for welding processes. This study contains the results for overlap joints of copper and aluminium using a laser beam welding process with spatial power modulation. With a parameter variation, the cross-sectional shape of the weld seams and therefore, the ratio of depth to width can be adjusted. With additional longitudinal cross sections and an energy-dispersive X-ray spectroscopy analysis, the different mixing behaviour of the dissimilar material depending on the top layer is investigated.
When laser sources of high brilliance are used for the micro-welding of metals, small seam dimensions are generated. If the spatial power is modulated by a superposition of the linear feed rate and a circular-oscillatory movement of high frequency, the width of the seam is controlled by the amplitude of the circular movement. In this study, the irradiation pattern of the seam was calculated and reveals that some spots of the seam area are not irradiated, while other have been irradiated several times. The seam shapes were visualized with micro cross-sections for different laser powers, linear feed rates and oscillatory amplitudes. Thermal simulations were made to discuss the different seam shapes. A consequence of the oscillatory movement is the appearance of different solidification fronts, which are visible in the micro cross-sections.
The effect of spatial power modulation (SPM)—also known as wobble—for the welding of aluminum alloys has been investigated in laser beam microwelding. As the superposition of a high frequency circular oscillation movement and a global feed, two new parameters (A—amplitude and f—frequency) are added to the typical process parameters P—power and vw—welding feed rate. Microscopic and metallographic analyses have been used to determine crack appearance and position. With the choice of a sufficient ratio of A, f, and vw, the cooling behavior can be influenced. This also has an impact on the crack formation. Furthermore, the circular movement influences the local speed of the laser beam which in turn can affect the pore formation. The same effect appears on the depth stability as the keyhole formation strongly depends on the speed of the laser beam. The pore formation and weld depth stability have also been analyzed to determine the difference between conventional welding and welding with SPM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.