To design a vehicle's suspension system for a specific, well defined road type or manoeuvre is not a challenge any more. As the application profile of the vehicle becomes wider, it becomes more difficult to find spring and damper characteristics to achieve an acceptable compromise between ride comfort and handling. For vehicles that require both good on-and off-road capabilities, suspension design poses a significant challenge. Vehicles with good off-road capabilities usually suffer from poor on-road handling. These vehicles are designed with a high centre of gravity due to the increased ground clearance, soft suspension systems and large wheel travel to increase ride comfort and ensure traction on all the wheels. All of these characteristics contribute to bad handling and increased rollover propensity even on good level roads. It is expect from these vehicles to have the same handling characteristics as a normal on-road vehicle. This paper analyses the use of an active anti-roll bar as a means of improving the handling of an off-road vehicle without sacrificing ride comfort. The proposed solution is simulated, designed, manufactured, implemented and tested to quantify the effect of the active anti-roll bar on both the handling and ride comfort of an off-road vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.