A data set was generated aiming to predict the toxicity of PAHs to soil organisms. Toxicity data include the effects of 16 PAHs on the survival and reproduction of the soil-dwelling springtail Folsomia fimetaria. The results show that only PAHs with reported log Kow values < or = 5.2 (i.e., naphthalene, acenaphthene, acenaphthylene, anthracene, phenanthrene, fluorene, pyrene, and fluoranthene) significantly affected the survival or reproduction of the test organisms. Threshold values for the toxicity of the individual PAHs could be expressed as pore-water concentrations by the use of reported organic carbon-normalized soil-pore-water partitioning coefficients (Koc values). For the PAHs with a log Kow < or = 5.2, toxicity significantly increased with increasing lipophilicity of the substances (r2 = 0.67; p = 0.012; n = 8), suggesting a narcotic mode of toxic action for most substances. However, the position of anthracene in the regression plot indicated a more specific mode of toxic action than narcosis, and removing this data point yielded the following regression equation: log EC10 (micromol/L) = -0.97 log Kow + 4.0 (r2 = 0.80; p = 0.006; n = 7). Using this quantitative structure-activity relationship (QSAR) to calculate threshold values for the toxicity of the remaining nontoxic substances (benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, dibenz[a,h]anthracene, benzo[a]pyrene, perylene, and indeno[1,2,3-cd]pyrene), the absence of toxicity could, in most cases, be explained by a limited water solubility, indicating that these substances do act by narcosis as the mode of toxic action and that their toxicity is governed by concentrations in the pore-water. The results provide important input to future model predictions of the ecological risk posed by PAH contaminated sites.
DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community.
The effects of eight polycyclic aromatic compounds on the survival and reproduction of the collembolan Folsomia fimetaria L. were investigated in a well-characterized Danish agricultural soil. With the exception of acridine, polycyclic aromatic hydrocarbons (PAHs) and neutral N-, S-, and O-monosubstituted analogues showed similar toxicities to soil collembolans when the results were expressed in relation to total soil concentrations (mg/kg). The estimated concentrations resulting in a 10% reduction of reproductive output (EC10 values) were based on measured initial concentrations and were for acridine 290 mg/kg, carbazole 10 mg/kg, dibenzofuran 19 mg/kg, dibenzothiophene 7.8 mg/kg, fluoranthene 37 mg/kg, fluorene 7.7 mg/kg, phenantrene 23 mg/kg, and pyrene 10 mg/kg. When the EC10 values were converted to soil pore-water concentrations, they showed a highly significant correlation (r2 = 0.71, p < 0.01) to no-observed-effect concentrations for the freshwater crustacean Daphnia magna, as estimated by a quantitative structure activity relation (QSAR) for baseline toxicity (nonpolar narcosis). Only carbazole and acridine were more than two times more toxic (4.9 and 3.1, respectively) than expected from the Daphnia QSAR data. The latter result indicates that the toxicity of the tested substances is close to that expected for compounds with nonpolar narcosis as the mode of action. However, the relatively large uncertainties in the extrapolation method prevent final conclusions from being drawn.
Field trials were established at three European sites (Denmark, Eastern France, South-West France) of genetically modified maize (Zea mays L.) expressing the CryIAb Bacillus thuringiensis toxin (Bt), the nearisogenic non-Bt cultivar, another conventional maize cultivar and grass. Soil from Denmark was sampled at sowing (May) and harvest (October) over two years (2002, 2003); from E France at harvest 2002, sowing and harvest 2003; and from SW France at sowing and harvest 2003. Samples were analysed for microbial community structure (2003 samples only) by community-level physiological-profiling (CLPP) and phospholipid fatty acid analysis (PLFA), and protozoa and nematodes in all samples. Individual differences within a site resulted from: greater nematode numbers under grass than maize on three occasions; different nematode populations under the conventional maize cultivars once; and two occasions when there was a reduced protozoan population under Bt maize compared to non-Bt maize. Microbial community structure within the sites only varied with grass compared to maize, with one occurrence of CLPP varying between maize cultivars (Bt versus a conventional cultivar). An overall comparison of Bt versus non-Bt maize across all three sites only revealed differences for nematodes, with a smaller population under the Bt maize. Nematode community structure was different at each site and the Bt effect was not confined to specific nematode taxa. The effect of the Bt maize was small and within the normal variation expected in these agricultural systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.