Social bookmarking is a recent phenomenon which has the potential to give us a great deal of data about pages on the web. One major question is whether that data can be used to augment systems like web search. To answer this question, over the past year we have gathered what we believe to be the largest dataset from a social bookmarking site yet analyzed by academic researchers. Our dataset represents about forty million bookmarks from the social bookmarking site del.icio.us. We contribute a characterization of posts to del.icio.us: how many bookmarks exist (about 115 million), how fast is it growing, and how active are the URLs being posted about (quite active). We also contribute a characterization of tags used by bookmarkers. We found that certain tags tend to gravitate towards certain domains, and vice versa. We also found that tags occur in over 50 percent of the pages that they annotate, and in only 20 percent of cases do they not occur in the page text, backlink page text, or forward link page text of the pages they annotate. We conclude that social bookmarking can provide search data not currently provided by other sources, though it may currently lack the size and distribution of tags necessary to make a significant impact.
Tagging systems allow users to interactively annotate a pool of shared resources using descriptive strings, which are called tags. Tags are used to guide users to interesting resources and help them build communities that share their expertise and resources. As tagging systems are gaining in popularity, they become more susceptible to tag spam: misleading tags that are generated in order to increase the visibility of some resources or simply to confuse users. Our goal is to understand this problem better. In particular, we are interested in answers to questions such as: How many malicious users can a tagging system tolerate before results significantly de-grade? What types of tagging systems are more vulnerable to malicious attacks? What would be the effort and the impact of employing a trusted moderator to find bad postings? Can a system automatically protect itself from spam, for instance , by exploiting user tag patterns? In a quest for answers to these questions, we introduce a framework for mod-eling tagging systems and user tagging behavior. We also describe a method for ranking documents matching a tag based on taggers' reliability. Using our framework, we study the behavior of existing approaches under malicious attacks and the impact of a moderator and our ranking method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.