T-box transcription factors are critical developmental regulators in all multi-cellular organisms, and altered T-box factor activity is associated with a variety of human congenital diseases and cancers. Despite the biological significance of T-box factors, their mechanism of action is not well understood. Here we examine whether SUMOylation affects the function of the C. elegans Tbx2 sub-family T-box factor TBX-2. We have previously shown that TBX-2 interacts with the E2 SUMO-conjugating enzyme UBC-9, and that loss of TBX-2 or UBC-9 produces identical defects in ABa-derived pharyngeal muscle development. We now show that TBX-2 is SUMOylated in mammalian cell assays, and that both UBC-9 interaction and SUMOylation depends on two SUMO consensus sites located in the T-box DNA binding domain and near the TBX-2 C-terminus, respectively. In co-transfection assays, a TBX-2:GAL4 fusion protein represses expression of a 5xGal4:tk:luciferase construct. However, this activity does not require SUMOylation, indicating SUMO is not generally required for TBX-2 repressor activity. In C. elegans, reducing SUMOylation enhances the phenotype of a temperature-sensitive tbx-2 mutant and results in ectopic expression of a gene normally repressed by TBX-2, demonstrating that SUMOylation is important for TBX-2 function in vivo. Finally, we show mammalian orthologs of TBX-2, Tbx2, and Tbx3, can also be SUMOylated, suggesting SUMOylation may be a conserved mechanism controlling T-box factor activity.Electronic supplementary materialThe online version of this article (doi:10.1007/s00018-013-1336-y) contains supplementary material, which is available to authorized users.
T-box transcription factors are important regulators of development in all animals, and altered expression of T-box factors has been identified in an increasing number of diseases and cancers. Despite these important roles, the mechanism of T-box factor activity is not well understood. We have previously shown that the C. elegans Tbx2 subfamily member TBX-2 functions as a transcriptional repressor to specify ABa-derived pharyngeal muscle, and that this function depends on SUMOylation. Here we show that TBX-2 function also depends on interaction with the Groucho-family corepressor UNC-37. TBX-2 interacts with UNC-37 in yeast two-hybrid assays via a highly conserved engrailed homology 1 (eh1) motif located near the TBX-2 C-terminus. Reducing unc-37 phenocopies tbx-2 mutants, resulting in a specific loss of anterior ABa-derived pharyngeal muscles and derepression of the tbx-2 promoter. Moreover, double mutants containing hypomorphic alleles of unc-37 and tbx-2 exhibit enhanced phenotypes, providing strong genetic evidence that unc-37 and tbx-2 share common functions in vivo. To test whether interaction with UNC-37 is necessary for TBX-2 activity, we developed a transgene rescue assay using a tbx-2 containing fosmid and found that mutating the tbx-2 eh1 motif reduced rescue of a tbx-2 null mutant. These results indicate that TBX-2 function in vivo depends on interaction with UNC-37. As many T-box factors contain eh1 motifs, we suggest that interaction with Groucho-family corepressors is a common mechanism contributing to their activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.