Algebraic data types and pattern matching are popular tools to build programs manipulating complex datastructures in a safe yet efficient manner. On top of its safety advantages, compilation techniques can turn pattern matching into highly efficient deconstruction code for immutable use cases.Conversely, high-performance datastructures and languages prefer to leverage (controlled) mutations to maximize time and memory efficiency. Algebraic data types provide a natural framework to efficiently describe in-place transformations as rewrite rules. Such representation could take advantage of parallelism opportunities that appear in tree-like structures.We present early steps towards a new technique to compile pattern matching as parallel in-place modifications of the underlying memory representation. Towards this goal, we combine the usual language approach which is common in pattern-matching compilation with tools from the polyhedral model, which is commonly used in high-performance code generation to output efficient C code. We present our formalism, along with a prototype implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.