This article presents a detailed model for the regulation of lateral root formation in Arabidopsis thaliana seedlings grown in culture. We demonstrate that direct contact between the aerial tissues and sucrose in the growth media is necessary and sufficient to promote emergence of lateral root primordia from the parent root. Mild osmotic stress is perceived by the root, which then sends an abscisic acid-dependent signal that causes a decrease in the permeability of aerial tissues; this reduces uptake of sucrose from the culture media, which leads to a repression of lateral root formation. Osmotic repression of lateral root formation in culture can be overcome by mutations that cause the cuticle of a plant's aerial tissues to become more permeable. Indeed, we report here that the previously described lateral root development2 mutant overcomes osmotic repression of lateral root formation because of a point mutation in Long Chain Acyl-CoA Synthetase2, a gene essential for cutin biosynthesis. Together, our findings (1) impact the interpretation of experiments that use Arabidopsis grown in culture to study root system architecture; (2) identify sucrose as an unexpected regulator of lateral root formation; (3) demonstrate mechanisms by which roots communicate information to aerial tissues and receive information in turn; and (4) provide insights into the regulatory pathways that allow plants to be developmentally plastic while preserving the essential balance between aboveground and belowground organs.
Root system size (RSS) is a complex trait that is greatly influenced by environmental cues. Hence, both intrinsic developmental pathways and environmental-response pathways contribute to RSS. To assess the natural variation in both types of pathways, we examined the root systems of the closely related Arabidopsis ecotypes Landsberg erecta (Ler) and Columbia (Col) grown under mild osmotic stress conditions. We found that Ler initiates more lateral root primordia, produces lateral roots from a higher percentage of these primordia, and has an overall larger root system than Col under these conditions. Furthermore, although each of these parameters is reduced by osmotic stress in both ecotypes, Ler shows a decreased sensitivity to osmotica. To understand the genetic basis for these differences, QTL for RSS under mild osmotic stress were mapped in a Ler 3 Col recombinant inbred population. Two robust quantitative trait loci (QTL) were identified and confirmed in near-isogenic lines (NILs). The NILs also allowed us to define distinct physiological roles for the gene(s) at each locus. This study provides insight into the genetic and physiological complexity that determines RSS and begins to dissect the molecular basis for naturally occurring differences in morphology and developmental plasticity in the root system.
SUMMARYWe have identified a gene, Lateral Root Development 3 (LRD3), that is important for maintaining a balance between primary and lateral root growth. The lrd3 mutant has decreased primary root growth and increased lateral root growth. We determined that the LRD3 gene encodes a LIM-domain protein of unknown function. LRD3 is expressed only in the phloem companion cells, which suggested a role in phloem function. Indeed, while phloem loading and export from the shoot appear to be normal, delivery of phloem to the primary root tip is limited severely in young seedlings. Abnormalities in phloem morphology in these seedlings indicate that LRD3 is essential for correct early phloem development. There is a subsequent spontaneous recovery of normal phloem morphology, which is correlated tightly with increased phloem delivery and growth of the primary root. The LRD3 gene is one of very few genes described to affect phloem development, and the only one that is specific to early phloem development. Continuous growth on auxin also leads to recovery of phloem development and function in lrd3, which demonstrates that auxin plays a key role in early phloem development. The root system architecture and the pattern of phloem allocation in the lrd3 root system suggested that there may be regulated mechanisms for selectively supporting certain lateral roots when the primary root is compromised. Therefore, this study provides new insights into phloem-mediated resource allocation and its effects on plant root system architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.