Progress in urban climate science is severely restricted by the lack of useful information that describes aspects of the form and function of cities at a detailed spatial resolution. To overcome this shortcoming we are initiating an international effort to develop the World Urban Database and Access Portal Tools (WUDAPT) to gather and disseminate this information in a consistent manner for urban areas worldwide. The first step in developing WUDAPT is a description of cities based on the Local Climate Zone (LCZ) scheme, which classifies natural and urban landscapes into categories based on climate-relevant surface properties. This methodology provides a culturally-neutral framework for collecting information about the internal physical structure of cities. Moreover, studies have shown that remote sensing data can be used for supervised LCZ mapping. Mapping of LCZs is complicated because similar LCZs in different regions have dissimilar spectral properties due to differences in vegetation, building materials and other variations in cultural and physical environmental factors. The WUDAPT protocol developed here provides an easy to understand workflow; uses freely available data and software; and can be applied by someone without specialist knowledge in spatial analysis or urban climate science. The paper also provides an example use of the WUDAPT project results.
The World Urban Database and Access Portal Tools (WUDAPT) is an international community-based initiative to acquire and disseminate climate relevant data on the physical geographies of cities for modeling and analysis purposes. The current lacuna of globally consistent information on cities is a major impediment to urban climate science toward informing and developing climate mitigation and adaptation strategies at urban scales. WUDAPT consists of a database and a portal system; its database is structured into a hierarchy representing different levels of detail, and the data are acquired using innovative protocols that utilize crowdsourcing approaches, Geowiki tools, freely accessible data, and building typology archetypes. The base level of information (L0) consists of local climate zone (LCZ) maps of cities; each LCZ category is associated with a range of values for model-relevant surface descriptors (roughness, impervious surface cover, roof area, building heights, etc.). Levels 1 (L1) and 2 (L2) will provide specific intra-urban values for other relevant descriptors at greater precision, such as data morphological forms, material composition data, and energy usage. This article describes the status of the WUDAPT project and demonstrates its potential value using observations and models. As a community-based project, other researchers are encouraged to participate to help create a global urban database of value to urban climate scientists.
The World Urban Database and Access Portal Tools (WUDAPT) project has grown out of the need for better information on the form and function of cities globally. Cities are described using Local Climate Zones (LCZ), which are associated with a range of key urban climate model parameters and thus can serve as inputs to high resolution urban climate models. We refer to this as level 0 data for each city. The LCZ level 0 product is produced using freely available Landsat imagery, crowdsourced training areas from the community, and the open source SAGA software. This paper outlines the protocol by which LCZ maps generated by different members of the community are produced and evaluated. In particular, the quality assessment comprises cross-validation, review, and cross-comparison with other data sets. To date, the results from the different quality assessments show that the LCZ maps are generally of moderate quality, i.e. 50-60% overall
Abstract:A recent re-evaluation of urban heat island (UHI) studies has suggested that the urban effect may be expressed more meaningfully as a difference between Local Climate Zones (LCZ), defined as areas with characteristic dimensions of between one and several kilometers that have distinct effects on climate at both micro-and local-scales (city streets to neighborhoods), rather than adopting the traditional method of comparing urban and rural air temperatures. This paper reports on a UHI study in Dublin (Ireland) which maps the urban area into LCZ and uses these as a basis for carrying out a UHI study. The LCZ map for Dublin is derived using a widely available land use/cover map as a basis. A small network of in-situ stations is deployed into different LCZ across Dublin and additional mobile temperature traverses carried out to examine the thermal characteristics of LCZ following mixed weather during a 1 week period in August 2010. The results show LCZ with high impervious/building coverage were on average >4 °C warmer at night than LCZ with high pervious/vegetated coverage during conditions conducive to strong UHI development. The distinction in mean LCZ nocturnal temperature allows for the generation of a heat map across the entire urban area.
a b s t r a c tIn recent years a number of models have been developed that describe the urban surface and simulate its climatic effects. Their great advantage is that they can be applied in environments outside the cities in which they have been developed and evaluated. Thus, they may be applied to cities in the economically developing world, which are growing rapidly, and where the results of such models may have greatest impact with respect to informing planning decisions. However, data requirements, particularly for the more complex urban models, represent a major obstacle to their employment. Here, we examine the potential for running the Surface Urban Energy and Water Balance model (SUEWS) using readily obtained data. SUEWS was designed to simulate energy and water balance terms at a neighbourhood scale (P1 km 2 ) and requires site-specific meteorological data and a detailed description of the surface. Here, its simulations are evaluated by comparison with measurements made over a seven month (approximately 3 seasons) period (April-October) at two flux tower sites (representing urban and suburban landscapes) in Dublin, Ireland. However, the main purpose of this work is to test the performance of the model under 'ideal' and 'imperfect' circumstances in relation to the input data required to run SUEWS. The ideal case uses detailed urban land cover data and meteorological data from the tower sites. The imperfect cases use parameters derived from the Local Climate Zone (LCZ) classification scheme and meteorological data from a standard weather station located beyond the urban area. For the period of record examined, the simulations show good E-mail address: paul.alexander@nuim.ie (P.J. Alexander).Urban Climate 13 (2015) 14-37 Contents lists available at ScienceDirectUrban Climate journ al homepage: www.elsevier.com/locate/uclim agreement with the observations in both ideal and imperfect cases, suggesting that the model can be used with data that is more easily derived. The comparison also shows the importance of including vegetative cover and of the initial moisture state in simulating the urban energy budget.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.