A study was carried out involving 721 pigs, comprising boars and gilts, with either 0, 0.25 , or 0.50 Duroc inclusion level, which were produced by mating Large White boars with Large White × British Landrace sows, Large White boars with Duroc × (Large White × British Landrace) sows, or Duroc boars with Large White × British Landrace sows, respectively. Animals were reared on one of seven different feeding regimens from 30 to 90 kg live weight. Tissue growth rates were determined using a triple sampling procedure based on a combination of full-side and ham joint dissection on subsamples of pigs (127 and 366 pigs, respectively) and P2 backfat thickness on the remainder. Initial body composition was determined at 30 kg on subsamples of the three genotypes. Daily food intakes increased with increasing Duroc inclusion but live-weight gains were similar for the three genotypes. Lean and fat growth rates and food conversion ratios were greatest for the 0·50 Duroc group, although the genotype differences were small. Killing-out proportions and P2 fat depths were higher for the 0.25 and 0·50 Duroc groups. The proportion of lean in the carcass was lower (P < 0·01) for 0·50 Duroc pigs. Japanese colour scores and EEL reflectance indicated that the longissimus muscle was darker for the 0·25 and 0·50 Duroc genotypes. Subcutaneous fat firmness scores and penetrometer readings taken in the mid back indicated softer fat for the 0 Duroc group. Intramuscular fat levels increased (P < 0·01) with increasing Duroc inclusion (10.4, 11.2, and 18·2 g/kg for the 0, 0.25, and 0.50 groups respectively). Cooked longissimus from pigs with 0·50 Duroc had a lower shear force and was judged to have a stronger pork odour and to be more tender and acceptable than that from the 0 Duroc group. The 0.25 Duroc group showed a small improvement in tenderness but a weaker pork odour and similar overall acceptability compared with the 0 Duroc group. This study suggests that the use of the Duroc in crossing systems in the United Kingdom will have limited impact on growth performance but that 0·50 Duroc inclusion will result in fatter carcasses, higher intramuscular fat levels and improved eating quality.
The influence of plane of nutrition and diet on the eating quality of fresh pork was investigated in a study involving 721 animals. Boars and gilts of three genotypes (0, 0·25 and 0·50 Duroc inclusion level) were reared from 30 to 90 kg on seven feeding regimens (combinations of diet formulation and feeding level) to achieve different rates of lean and fat tissue growth during two growth periods (30 to 60 or 75 kg; 60 or 75 kg to 90 kg), respectively. A diet of conventional energy and protein (CEP, 14·2 MJ/kg digestible energy, 205 g/kg crude protein, 10 g/kg lysine) was given using combinations of ad libitum and restricted feeding to produce six treatment groups with variation in lean and fat growth rates. An additional treatment group was given food ad libitum on a higher energy and lower protein diet (HELP, 14·7 MJ/kg digestible energy, 166 g/kg crude protein, 7·0 g/kg lysine) between 30 and 90 kg. Dissected carcass composition at 90 kg was predicted from equations based on P2 fat depth, which were developed from full-side and ham joint dissections on sub-samples of animals. Representative sub-samples of animals were dissected at start (30 kg) and at interim weights (60 or 75 kg) to allow lean and subcutaneous fat growth rates to be calculated for all or parts of the growth period. The feeding regimes produced substantial variation in live-weight gain (DLWG) (744 to 914 g/day) and lean tissue growth rate (LTGR 345 to 417 g/day) and subcutaneous fat growth rate (SFGR 81 to 97 g/day), between 30 and 90 kg, and in longissimus dorsi intramuscular fat content (10·37 to 23·87 g/kg). Pigs given the HELP diet had the highest intramuscular fat and the best eating quality. Pigs offered the CEP diet ad libitum throughout the growth period produced more tender but less juicy meat than those given food restrictedly (0·8 or 0·9 of ad libitum). The correlations between DLWG, LTGR and SFGR for the whole or parts of the growth period and sensory characteristics, although often positive, were generally low, suggesting weak relationships.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.