Enhanced tendon and ligament repair would have a major impact on orthopaedic surgery outcomes, resulting in reduced repair failures and repeat surgeries, more rapid return to function, and reduced health care costs. Scaffolds have been used for mechanical and biologic reinforcement of repair and regeneration with mixed results. This review summarizes efforts made using biologic and synthetic scaffolds using rotator cuff and ACL as examples of clinical applications, discusses recent advances that have shown promising clinical outcomes, and provides insight into future therapy.
Supraspinatus (SS) tendon tears are common musculoskeletal injuries whose surgical repair exhibits the highest incidence of re-tear of any tendon. Development of therapeutics for improving SS tendon healing is impaired by the lack of a model that allows biological perturbations to identify mechanisms that underlie ineffective healing. The objective of this study was to develop a mouse model of supraspinatus insertion site healing by creating a reproducible SS tendon detachment and surgical repair which can be applied to a wide array of inbred mouse strains and genetic mutants. Anatomical and structural analyses confirmed that the rotator cuff of the mouse is similar to that of human, including the presence of a coracoacromial (CA) arch and an insertion site that exhibits a fibrocartilagenous transition zone. The surgical repair was successfully conducted on seven strains of mice that are commonly used in Orthopaedic Research suggesting that the procedure can be applied to most inbred strains and genetic mutants. The quality of the repair was confirmed with histology through 14 days after surgery in two mouse strains that represent the variation in mouse strains evaluated. The developed mouse model will allow us to investigate mechanisms involved in insertion site healing. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.