Type-1 diabetes mellitus (T1DM) is an autoimmune disease that has an impact on mortality due to the destruction of insulin-producing pancreatic β -cells in the islets of Langerhans. Over the past few years, the interest in analyzing this type of disease, either in a biological or mathematical sense, has relied on the search for a treatment that guarantees full control of glucose levels. Mathematical models inspired by natural phenomena, are proposed under the prey–predator scheme. T1DM fits in this scheme due to the complicated relationship between pancreatic β -cell population growth and leukocyte population growth via the immune response. In this scenario, β -cells represent the prey, and leukocytes the predator. This paper studies the global dynamics of T1DM reported by Magombedze et al. in 2010. This model describes the interaction of resting macrophages, activated macrophages, antigen cells, autolytic T-cells, and β -cells. Therefore, the localization of compact invariant sets is applied to provide a bounded positive invariant domain in which one can ensure that once the dynamics of the T1DM enter into this domain, they will remain bounded with a maximum and minimum value. Furthermore, we analyzed this model in a closed-loop scenario based on nonlinear control theory, and proposed bases for possible control inputs, complementing the model with them. These entries are based on the existing relationship between cell–cell interaction and the role that they play in the unchaining of a diabetic condition. The closed-loop analysis aims to give a deeper understanding of the impact of autolytic T-cells and the nature of the β -cell population interaction with the innate immune system response. This analysis strengthens the proposal, providing a system free of this illness—that is, a condition wherein the pancreatic β -cell population holds and there are no antigen cells labeled by the activated macrophages.
En este trabajo de investigación se desarrolla un sistema de radio frecuencia (RF) bajo modulación QPSK para la transmisión de señales biomédicas como EMG y ECG en la banda de los 2 GHz. El sistema se implementa mediante un transceptor que opera en aplicaciones 4G mediante un transceptor dual. Las señales se adquieren mediante la tarjeta de adquisición ECG/EKG y electrodos de superficie, el manejo y tratamiento de la señal se realiza en lenguaje C, a la modulación digital se le implementa un filtro pasa bandas cuadrático en la tarjeta ARRADIO+SocKit. La implementación desarrollada es una aportación a los trabajo de Telemedicina para la era pospandemia, el sistema hace una evaluación espectral de la calidad de la constelación QAM, así como el análisis espectral de la invasión de bandas adyacentes. Como trabajo futuro se pretende emigrar tumbo a la 5G en un transceptor que opere en las bandas de los 3-6 GHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.