Deep learning-based image segmentation is by now firmly established as a robust tool in image segmentation. It has been widely used to separate homogeneous areas as the first and critical component of diagnosis and treatment pipeline. In this article, we present a critical appraisal of popular methods that have employed deep-learning techniques for medical image segmentation. Moreover, we summarize the most common challenges incurred and suggest possible solutions.
Deep learning has become increasingly popular in both academic and industrial areas in the past years. Various domains including pattern recognition, computer vision, and natural language processing have witnessed the great power of deep networks. However, current studies on deep learning mainly focus on data sets with balanced class labels, while its performance on imbalanced data is not well examined. Imbalanced data sets exist widely in real world and they have been providing great challenges for classification tasks. In this paper, we focus on the problem of classification using deep network on imbalanced data sets. Specifically, a novel loss function called mean false error together with its improved version mean squared false error are proposed for the training of deep networks on imbalanced data sets. The proposed method can effectively capture classification errors from both majority class and minority class equally. Experiments and comparisons demonstrate the superiority of the proposed approach compared with conventional methods in classifying imbalanced data sets on deep neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.