A predictive model for estimating thermal contact conductance between two nominally flat metallic rough surfaces has been developed and experimentally validated. The predictive model consists of two complementary parts, the first of which is a surface deformation analysis to calculate the actual area of contact for each contact spot, while the second accounts for the effects of constriction resistance and gas gap conductance between the contacting surfaces. A surface characterization technique is developed which generates an equivalent 3-D surface profile from multiple 2-D profiles and determines the unique wavelengths of importance for the surface deformation and constriction resistance models. For given surface profiles and material properties of two contacting surfaces, and a specified contact pressure, the surface characterization technique filters out non-essential wavelengths on the surface, after which the surface deformation analysis calculates the deformation and contact area of each contacting asperity by considering three different modes of deformation, namely, elastic, elastic-plastic, and plastic. The constriction resistance model is then used to calculate the constriction resistance for each contacting asperity based on the area of contact and radius of curvature of the asperity. The constriction resistance values for all the contacting asperities are then used to calculate the total thermal contact conductance. An experimental facility has also been constructed to measure thermal contact conductance of interfaces to
Turbulent Jet Ignition is an advanced spark initiated pre-chamber combustion system for otherwise standard spark ignition engines. Combustion in the main chamber is initiated by jets of partially combusted (reacting) pre-chamber products which provide a high energy ignition source. The resultant widely distributed ignition sites allow relatively small flame travel distances enabling short combustion durations and high burn rates. Demonstrated benefits include ultra lean operation (λ>2) at part load and high load knock improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.