Growing evidence suggests that endogenous and exogenous fatty acids play diverse roles in developing mammalian oocytes and early embryos. In this review, we describe some of the regulatory roles of fatty acids in early development, in addition to their metabolic functions. We focus initially on the provision of individual fatty acids, and then discuss how these might affect metabolism, oxidative stress, membrane composition, cell signalling events and gene expression. We propose that ongoing research should focus on physiologically relevant ratios and combinations of fatty acids, rather than isolated individual fatty acids, as their combined roles are both subtle and complex. Changing the ratio of specific fatty acids in the diet of animal models, and in vitro culture medium can cause significant dysregulation of cellular processes and development, an issue that extends to human fertility.
Non-invasive assay of the consumption and release of metabolites by individual human embryos could allow selection at the cleavage stage of development and facilitate Single Embryo Transfer in clinical IVF but will require simple, high throughput, sensitive methods applicable to small volume samples.A rapid, simple, non-invasive method has therefore been devised using a standard fluorescence plate reader, and used to measure the consumption of pyruvate and glucose, and release of lactate by single bovine embryos at all stages of preimplantation development in culture; amino acid profiles have been determined using HPLC.Early embryos with an ‘intermediate’ level (6.14±0.27 pmol/embryo/h) of pyruvate uptake were associated with the highest rate (68.3%) of blastocyst development indicating that a mid “optimum” range of pyruvate consumption correlates with high viability in this bovine model.
In many countries, fat supplementation in the diet has become common in the dairy industry. There are several ideas as to how dietary fat could influence reproductive performance. Saturated fatty acids, such as palm oil, can increase milk yield but may aggravate negative energy balance and thus may impair fertility when fed during the first week post-partum. However, priming the lipid oxidation in the liver by feeding saturated fats during the dry period has recently been shown to be a potentially promising strategy to mitigate fat mobilization and liver accumulation post-partum. Furthermore, polyunsaturated fats (omega-3 fatty acids and conjugated linoleic acids) are fed to reduce the 'de novo' fat synthesis in the udder and thus the milk fat content, which may be of modest benefit for overall energy balance. Furthermore, omega-6 and omega-3 polyunsaturated fatty acids are reported to alter follicular growth, steroid synthesis and prostaglandin metabolism in the ovary and endometrium, respectively. Omega-6 fatty acids are believed to have pro-inflammatory and thus PGF2α-stimulating properties rendering them extra value as 'nutraceutical' early post-partum, while omega-3 fatty acids can weaken this inflammatory potency, leading to a higher chance of survival of the embryo when supplemented during the periconceptual period. Unfortunately, research results rarely provide a consensus in this perspective. The consequences of these fat-feeding strategies on oocyte and embryo quality remain an intriguing issue for debate. Fat feeding may alter the microenvironment of the growing and maturing oocyte of the early and older embryo and thus may affect reproductive outcome. We recently reported that dietary-induced hyperlipidaemic conditions can be harmful for embryo development and metabolism. However, to date, research results remain somewhat conflicting most probably due to differences in fat sources used, in diet and duration of supplementation and in experimental set-up in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.