We used molecular dynamics (MD) techniques to examine the encapsulation of Bengal Rose (BR) molecules in the Meijer dendrimer box (DBox) formed by the addition of tert-butyloxycarbonyl-l-Phe (tBOC-l-Phe) cap molecules to the 64 terminal primary amines of a fifth generation poly(propyleneimine) (PPI-5) dendrimer. Using a large periodic box (including DBox, four to six BR, and CH2Cl2 solvent, totaling ∼25 000 atoms), we examined the MD of these systems for ∼0.5 ns. Without the cap we find that BR molecules establish a concentration dependent equilibrium between the interior and surface regions of PPI-5 and the solvent region outside the dendrimer. The number of BR molecules calculated to associate with the interior of the PPI-5 dendrimer agrees exactly with experiment (at the same BR/PPI concentration). MD simulations on the DBox in CH2Cl2 show that the tBOC-l-Phe surface is completely impermeable to encapsulated BR molecules, even when an excess is forced inside the box. The close correspondence of the theory with experiment suggests that these methods can be used to design such systems in advance of experiment.
Dendrimers and hyperbranched polymers represent a revolution in methodology for directed synthesis of monodisperse polymers with enormous possibility of novel architectures. They demonstrate ability to attain micelle-like structures with distinct internal and external character. Furthermore polyfunctional character of dendrimers allows varied response to environment and promise as selective sensors, carrier for drugs, encapsulation of toxic chemicals and metals. One of the key problems are the characterization of the structures. Theory and simulation can be essential to provide and predict structure and properties. Here, we present some recent advances in theory, modeling and simulation of dendritic polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.