The efficacy of linezolid, alone or in combination with rifampin, against methicillin-susceptible Staphylococcus aureus in rabbits with experimental endocarditis was investigated. Linezolid (50 or 75 mg/kg of body weight), rifampin, and linezolid (25, 50, or 75 mg/kg) plus rifampin produced statistically significant reductions in bacterial counts compared with those in untreated controls. Plasma or valvular vegetation levels of linezolid in the groups treated with the linezolid-rifampin combination were similar to those in the respective linezolid-only treatment groups. At therapeutic levels of linezolid, rifampin resistance was not observed. The results from this experimental model of endocarditis suggest that while rifampin did not provide synergy to the linezolid dosing, it did not antagonize the efficacy of linezolid.
d-boroAla was previously characterized as an inhibitor of bacterial alanine racemase and d-Ala-d-Ala ligase enzymes [Duncan, K., et al Biochemistry 1989, 28:3541–9]. In the present study, d-boroAla was identified and characterized as an antibacterial agent. d-boroAla has activity against both Gram-positive and Gram-negative organisms, with MICs down to 8 µg/mL. A structure-function study on the alkyl side chain (NH2-CHR-B(OR’)2) revealed that d-boroAla is the most effective agent in a series including boroGly, d-boroHomoAla, and d-boroVal. l-boroAla was much less active, and N-acetylation completely abolished activity. An LC-MS/MS assay was used to demonstrate that d-boroAla exerts its antibacterial activity by inhibition of d-Ala-d-Ala ligase (DDL). d-boroAla is bactericidal at 1× MIC against Staphylococcus aureus and Bacillus subtilis – which each encode one copy of DDL, and at 4× MIC against Escherichia coli and Salmonella enterica serovar Typhimurium – which each encode two copies of DDL. d-boroAla demonstrated a frequency of resistance of 8×10−8 at 4× MIC in S. aureus. These results demonstrate that d-boroAla has promising antibacterial activity, and could serve as the lead agent in a new class of DDL targeted antibacterial agents. This study also demonstrates d-boroAla as a possible probe for DDL function.
Antibiotic drug development remains a major challenge with few candidates in clinical development. Ramizol, a first-in-class styrylbenzene antibiotic, is under development for the treatment of Clostridium difficile associated disease. Here, we investigate the in vitro antibacterial activity of Ramizol in comparison to fidaxomicin, vancomycin and metronidazole against 100 clinical isolates of C. difficile by the broth microdilution method. We show there is no apparent impact of ribotype, toxin-production, or resistance to fidaxomicin, vancomycin or metronidazole on the activity of Ramizol. Moreover, we show Ramizol has a narrower MIC range translating to potentially better control over the therapeutic dose. Together, these results support the further development of Ramizol for the treatment of C. difficile associated disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.