In the Ethereum network, miners are incentivized to include transactions in a block depending on the gas price specified by the sender. The sender of a transaction therefore faces a trade-off between timely inclusion and cost of his transaction. Existing recommendation mechanisms aggregate recent gas price data on a per-block basis to suggest a gas price. We perform an empirical analysis of historic block data to motivate the use of a predictive model for gas price recommendation. Subsequently, we propose a novel mechanism that combines a deep-learning based price forecasting model as well as an algorithm parameterized by a user-specific urgency value to recommend gas prices. In a comprehensive evaluation on real-world data, we show that our approach results on average in costs savings of more than 50% while only incurring an inclusion delay of 1.3 blocks, when compared to the gas price recommendation mechanism of the most widely used Ethereum client.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.