Solar thermal electricity (STE) generation offers an excellent opportunity to supply electricity with a non-CO 2 emitting technology. However, present costs hamper widespread deployment and therefore research and development efforts are concentrated on accelerated cost reductions and efficiency improvements. Many focus on the latter, but in this paper we rather focus on attaining very low levelised electricity costs (LEC) by designing a system with very low material cost, while maintaining appreciable conversion efficiency and achieving low maintenance cost. All investigated designs were dimensioned at a 50 MW scale production. Calculated LECs show that a new proposed hybrid of ocean thermal energy conversion with an offshore solar pond (OTEC-OSP) may have the lowest LEC of 0.04 €/kWh. Addition of a floating offshore solar pond (OSP) to an OTEC system increases the temperature difference in the Rankine cycle, which leads to an improved efficiency of 12%, while typical OTEC efficiencies are 3%. This higher efficiency leads to much lower investments needed for power blocks, while the OSP is fabricated using very low-cost plastic foils. The new OTEC-OSP design can be located in many sunny coastal areas in the world.
Indirect atmospheric CO 2 capture from main power generation process in OTEC CO 2 from OTEC purified with energy optimized water scrubber OTEC CO 2 -associated production costs in the range of 15-35 euro per ton
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.